File size: 4,721 Bytes
38e20ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# The implementation is adopted from TFace,made pubicly available under the Apache-2.0 license at
# https://github.com/Tencent/TFace/blob/master/recognition/torchkit/backbone/model_resnet.py
import torch.nn as nn
from torch.nn import BatchNorm1d, BatchNorm2d, Conv2d, Dropout, Linear, MaxPool2d, Module, ReLU, Sequential

from .common import initialize_weights


def conv3x3(in_planes, out_planes, stride=1):
    """ 3x3 convolution with padding
    """
    return Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=1,
        bias=False)


def conv1x1(in_planes, out_planes, stride=1):
    """ 1x1 convolution
    """
    return Conv2d(
        in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class Bottleneck(Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = conv1x1(inplanes, planes)
        self.bn1 = BatchNorm2d(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn2 = BatchNorm2d(planes)
        self.conv3 = conv1x1(planes, planes * self.expansion)
        self.bn3 = BatchNorm2d(planes * self.expansion)
        self.relu = ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return out


class ResNet(Module):
    """ ResNet backbone
    """

    def __init__(self, input_size, block, layers, zero_init_residual=True):
        """ Args:
            input_size: input_size of backbone
            block: block function
            layers: layers in each block
        """
        super(ResNet, self).__init__()
        assert input_size[0] in [112, 224], \
            'input_size should be [112, 112] or [224, 224]'
        self.inplanes = 64
        self.conv1 = Conv2d(
            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = BatchNorm2d(64)
        self.relu = ReLU(inplace=True)
        self.maxpool = MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        self.bn_o1 = BatchNorm2d(2048)
        self.dropout = Dropout()
        if input_size[0] == 112:
            self.fc = Linear(2048 * 4 * 4, 512)
        else:
            self.fc = Linear(2048 * 7 * 7, 512)
        self.bn_o2 = BatchNorm1d(512)

        initialize_weights(self.modules)
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.bn_o1(x)
        x = self.dropout(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        x = self.bn_o2(x)

        return x


def ResNet_50(input_size, **kwargs):
    """ Constructs a ResNet-50 model.
    """
    model = ResNet(input_size, Bottleneck, [3, 4, 6, 3], **kwargs)

    return model


def ResNet_101(input_size, **kwargs):
    """ Constructs a ResNet-101 model.
    """
    model = ResNet(input_size, Bottleneck, [3, 4, 23, 3], **kwargs)

    return model


def ResNet_152(input_size, **kwargs):
    """ Constructs a ResNet-152 model.
    """
    model = ResNet(input_size, Bottleneck, [3, 8, 36, 3], **kwargs)

    return model