diqiu7's picture
Update app.py
8f86798 verified
import os
os.system("pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt221/download.html")
import shutil
import math
from huggingface_hub import snapshot_download
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
repo_id="multimodalart/diffposetalk",
local_dir="pretrained_models/diffposetalk"
)
base_dir = "pretrained_models"
os.makedirs(base_dir, exist_ok=True)
# Download FLAME, mediapipe, and smirk
for model in ["FLAME", "mediapipe", "smirk"]:
# Download to a temp folder first
temp_dir = f"{base_dir}/{model}_temp"
snapshot_download(
repo_id="Skywork/SkyReels-A1",
local_dir=temp_dir,
allow_patterns=f"extra_models/{model}/**"
)
# Move files from nested extra_models/model to the proper location
src_dir = f"{temp_dir}/extra_models/{model}"
dst_dir = f"{base_dir}/{model}"
os.makedirs(dst_dir, exist_ok=True)
# Move all contents
for item in os.listdir(src_dir):
shutil.move(f"{src_dir}/{item}", f"{dst_dir}/{item}")
# Clean up temp directory
shutil.rmtree(temp_dir)
# Download SkyReels-A1-5B
snapshot_download(
repo_id="Skywork/SkyReels-A1",
local_dir=f"{base_dir}/SkyReels-A1-5B",
)
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
import gc
import tempfile
import moviepy.editor as mp
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from diffusers.utils import export_to_video, load_image
# Import required modules from SkyReels
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d
from diffusers.models import AutoencoderKLCogVideoX
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffposetalk.diffposetalk import DiffPoseTalk
# Helper functions from the original script
def parse_video(driving_frames, max_frame_num, fps=25):
video_length = len(driving_frames)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
new_driving_frames = []
for idx in frame_indices:
new_driving_frames.append(driving_frames[idx])
if len(new_driving_frames) >= max_frame_num - 1:
break
video_lenght_add = max_frame_num - len(new_driving_frames) - 1
new_driving_frames = [new_driving_frames[0]]*2 + new_driving_frames[1:len(new_driving_frames)-1] + [new_driving_frames[-1]] * video_lenght_add
return new_driving_frames
def write_mp4(video_path, samples, fps=12):
clip = mp.ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac", codec="libx264",
ffmpeg_params=["-crf", "18", "-preset", "slow"])
def save_video_with_audio(video_path, audio_path, save_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = mp.AudioFileClip(audio_path)
if audio_clip.duration > video_clip.duration:
audio_clip = audio_clip.subclip(0, video_clip.duration)
video_with_audio = video_clip.set_audio(audio_clip)
video_with_audio.write_videofile(save_path, fps=12, codec="libx264", audio_codec="aac")
# Clean up
video_clip.close()
audio_clip.close()
return save_path
def pad_video(driving_frames, fps=25):
video_length = len(driving_frames)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
new_driving_frames = []
for idx in frame_indices:
new_driving_frames.append(driving_frames[idx])
pad_length = math.ceil(len(new_driving_frames) / 48) * 48 - len(new_driving_frames)
new_driving_frames.extend([new_driving_frames[-1]]*pad_length)
return new_driving_frames, pad_length
# Global parameters
model_name = "pretrained_models/SkyReels-A1-5B/"
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
weight_dtype = torch.bfloat16
max_frame_num = 49
sample_size = [480, 720]
# Preload all models in global context
print("Loading models...")
# Load LMK extractor and processors
lmk_extractor = LMKExtractor()
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False)
face_helper = FaceRestoreHelper(upscale_factor=1, face_size=512, crop_ratio=(1, 1),
det_model='retinaface_resnet50', save_ext='png', device="cuda")
# Load siglip visual encoder
siglip = SiglipVisionModel.from_pretrained(siglip_name)
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_name)
# Load diffposetalk
diffposetalk = DiffPoseTalk()
# Load SkyReels models
transformer = CogVideoXTransformer3DModel.from_pretrained(
model_name,
subfolder="transformer"
).to(weight_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="pose_guider",
).to(weight_dtype)
# Set up pipeline
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained(
model_name,
transformer=transformer,
vae=vae,
lmk_encoder=lmk_encoder,
image_encoder=siglip,
feature_extractor=siglip_normalize,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.transformer = torch.compile(pipe.transformer)
pipe.vae.enable_tiling()
pipe.vae = torch.compile(pipe.vae)
# pipe.enable_model_cpu_offload()
print("Models loaded successfully!")
def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, progress=gr.Progress()):
progress(0.1, desc="Processing inputs...")
# Create a directory for outputs if it doesn't exist
output_dir = "gradio_outputs"
os.makedirs(output_dir, exist_ok=True)
# Create temp files for processing
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video_file, \
tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_output_file:
temp_video_path = temp_video_file.name
final_output_path = temp_output_file.name
# Set seed
# seed = 43
# generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0.2, desc="Processing image...")
# Load and process image
image = load_image(image=image_path)
image = processor.crop_and_resize(image, sample_size[0], sample_size[1])
# Crop face
ref_image, x1, y1 = processor.face_crop(np.array(image))
face_h, face_w, _ = ref_image.shape
source_image = ref_image
progress(0.3, desc="Processing facial landmarks...")
# Process source image
source_outputs, source_tform, image_original = processor.process_source_image(source_image)
progress(0.4, desc="Processing audio...")
# Process audio and generate driving outputs
driving_outputs = diffposetalk.infer_from_file(
audio_path,
source_outputs["shape_params"].view(-1)[:100].detach().cpu().numpy()
)
progress(0.5, desc="Processing landmarks from coefficients...")
# Process landmarks
out_frames = processor.preprocess_lmk3d_from_coef(
source_outputs, source_tform, image_original.shape, driving_outputs
)
out_frames, pad_length = pad_video(out_frames)
print(len(out_frames), pad_length)
# out_frames = parse_video(out_frames, max_frame_num)
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(len(out_frames), axis=0)
for ii in range(rescale_motions.shape[0]):
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
ref_image_resized = cv2.resize(ref_image, (512, 512))
ref_lmk = lmk_extractor(ref_image_resized[:, :, ::-1])
ref_img = vis.draw_landmarks_v3(
(512, 512), (face_w, face_h),
ref_lmk['lmks'].astype(np.float32), normed=True
)
first_motion = np.zeros_like(np.array(image))
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
first_motion = first_motion[np.newaxis, :]
# motions = np.concatenate([first_motion, rescale_motions])
# input_video = motions[:max_frame_num]
# Face alignment
face_helper.clean_all()
face_helper.read_image(np.array(image)[:, :, ::-1])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
align_face = face_helper.cropped_faces[0]
image_face = align_face[:, :, ::-1]
# Prepare input video
# input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
# input_video = input_video / 255
progress(0.6, desc="Generating animation (this may take a while)...")
# Generate video
out_samples = []
for i in range(0, len(rescale_motions), 48):
motions = np.concatenate([first_motion, rescale_motions[i:i+48]])
input_video = motions
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
input_video = input_video / 255
with torch.no_grad():
sample = pipe(
image=image,
image_face=image_face,
control_video=input_video,
prompt="",
negative_prompt="",
height=480,
width=720,
num_frames=49,
# generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=steps,
)
if i == 0:
out_samples.extend(sample.frames[0])
else:
out_samples.extend(sample.frames[0][1:])
# out_samples = sample.frames[0]
# out_samples = out_samples[2:] # Skip first two frames
if pad_length == 0:
out_samples = out_samples[1:]
else:
out_samples = out_samples[1:-pad_length]
progress(0.8, desc="Creating output video...")
# Export video
export_to_video(out_samples, temp_video_path, fps=12)
progress(0.9, desc="Adding audio to video...")
# Add audio to video
result_path = save_video_with_audio(temp_video_path, audio_path, final_output_path)
# Create side-by-side comparison
target_h, target_w = sample_size[0], sample_size[1]
final_images = []
for i in range(len(out_samples)):
frame1 = image
frame2 = Image.fromarray(np.array(out_samples[i])).convert("RGB")
result = Image.new('RGB', (target_w * 2, target_h))
result.paste(frame1, (0, 0))
result.paste(frame2, (target_w, 0))
final_images.append(np.array(result))
comparison_path = os.path.join(output_dir, "comparison.mp4")
write_mp4(comparison_path, final_images, fps=12)
# Add audio to comparison video
comparison_with_audio = os.path.join(output_dir, "comparison_with_audio.mp4")
comparison_with_audio = save_video_with_audio(comparison_path, audio_path, comparison_with_audio)
progress(1.0, desc="Done!")
torch.cuda.empty_cache()
gc.collect()
return result_path, comparison_with_audio
# Create Gradio interface
with gr.Blocks(title="SkyReels A1 Talking Head") as app:
gr.Markdown("# SkyReels A1 Talking Head")
gr.Markdown('''Upload a portrait image and an audio file to animate the face. 💡 Enjoying this demo? Share your feedback or review, and you might earn exclusive rewards! 🚀✨
📩 [Contact us on Discord](https://discord.com/invite/PwM6NYtccQ) for details. 🔥 [Code](https://github.com/SkyworkAI/SkyReels-A1) [Huggingface](https://huggingface.co/Skywork/SkyReels-A1)''')
with gr.Row():
with gr.Column():
with gr.Row():
image_input = gr.Image(type="filepath", label="Portrait Image")
audio_input = gr.Audio(type="filepath", label="Driving Audio")
with gr.Row():
guidance_scale = gr.Slider(minimum=1.0, maximum=7.0, value=3.0, step=0.1, label="Guidance Scale")
inference_steps = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Inference Steps")
generate_button = gr.Button("Generate Animation", variant="primary")
with gr.Column():
output_video = gr.Video(label="Animation Result")
comparison_video = gr.Video(label="Side-by-Side Comparison")
generate_button.click(
fn=process_image_audio,
inputs=[image_input, audio_input, guidance_scale, inference_steps],
outputs=[output_video, comparison_video]
)
gr.Markdown("""
## Instructions
1. Upload a portrait image (frontal face works best)
2. Upload an audio file (wav format recommended)
3. Adjust parameters if needed
4. Click "Generate Animation" to create the video
Note: Processing may take several minutes depending on your hardware.
""")
if __name__ == "__main__":
app.launch(share=True)