Spaces:
Running
on
L40S
Running
on
L40S
File size: 13,408 Bytes
edf6d55 9ba126d 8f86798 edf6d55 28b2dac 9ba126d 28b2dac 9ba126d 28b2dac 5a3cb74 98fd183 5a3cb74 28b2dac 8f86798 28b2dac e7b9df9 28b2dac 98b03ff 28b2dac 8f86798 28b2dac 8f86798 28b2dac 8f86798 28b2dac 8f86798 28b2dac 8f86798 28b2dac 8f86798 28b2dac 98b03ff 28b2dac 11d40bf 2f1789c 6e29211 28b2dac 57dfe51 28b2dac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 |
import os
os.system("pip install pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt221/download.html")
import shutil
import math
from huggingface_hub import snapshot_download
os.makedirs("pretrained_models", exist_ok=True)
snapshot_download(
repo_id="multimodalart/diffposetalk",
local_dir="pretrained_models/diffposetalk"
)
base_dir = "pretrained_models"
os.makedirs(base_dir, exist_ok=True)
# Download FLAME, mediapipe, and smirk
for model in ["FLAME", "mediapipe", "smirk"]:
# Download to a temp folder first
temp_dir = f"{base_dir}/{model}_temp"
snapshot_download(
repo_id="Skywork/SkyReels-A1",
local_dir=temp_dir,
allow_patterns=f"extra_models/{model}/**"
)
# Move files from nested extra_models/model to the proper location
src_dir = f"{temp_dir}/extra_models/{model}"
dst_dir = f"{base_dir}/{model}"
os.makedirs(dst_dir, exist_ok=True)
# Move all contents
for item in os.listdir(src_dir):
shutil.move(f"{src_dir}/{item}", f"{dst_dir}/{item}")
# Clean up temp directory
shutil.rmtree(temp_dir)
# Download SkyReels-A1-5B
snapshot_download(
repo_id="Skywork/SkyReels-A1",
local_dir=f"{base_dir}/SkyReels-A1-5B",
)
import gradio as gr
import torch
import numpy as np
from PIL import Image
import cv2
import gc
import tempfile
import moviepy.editor as mp
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from diffusers.utils import export_to_video, load_image
# Import required modules from SkyReels
from skyreels_a1.models.transformer3d import CogVideoXTransformer3DModel
from skyreels_a1.skyreels_a1_i2v_pipeline import SkyReelsA1ImagePoseToVideoPipeline
from skyreels_a1.pre_process_lmk3d import FaceAnimationProcessor
from skyreels_a1.src.media_pipe.mp_utils import LMKExtractor
from skyreels_a1.src.media_pipe.draw_util_2d import FaceMeshVisualizer2d
from diffusers.models import AutoencoderKLCogVideoX
from transformers import SiglipImageProcessor, SiglipVisionModel
from diffposetalk.diffposetalk import DiffPoseTalk
# Helper functions from the original script
def parse_video(driving_frames, max_frame_num, fps=25):
video_length = len(driving_frames)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
new_driving_frames = []
for idx in frame_indices:
new_driving_frames.append(driving_frames[idx])
if len(new_driving_frames) >= max_frame_num - 1:
break
video_lenght_add = max_frame_num - len(new_driving_frames) - 1
new_driving_frames = [new_driving_frames[0]]*2 + new_driving_frames[1:len(new_driving_frames)-1] + [new_driving_frames[-1]] * video_lenght_add
return new_driving_frames
def write_mp4(video_path, samples, fps=12):
clip = mp.ImageSequenceClip(samples, fps=fps)
clip.write_videofile(video_path, audio_codec="aac", codec="libx264",
ffmpeg_params=["-crf", "18", "-preset", "slow"])
def save_video_with_audio(video_path, audio_path, save_path):
video_clip = mp.VideoFileClip(video_path)
audio_clip = mp.AudioFileClip(audio_path)
if audio_clip.duration > video_clip.duration:
audio_clip = audio_clip.subclip(0, video_clip.duration)
video_with_audio = video_clip.set_audio(audio_clip)
video_with_audio.write_videofile(save_path, fps=12, codec="libx264", audio_codec="aac")
# Clean up
video_clip.close()
audio_clip.close()
return save_path
def pad_video(driving_frames, fps=25):
video_length = len(driving_frames)
duration = video_length / fps
target_times = np.arange(0, duration, 1/12)
frame_indices = (target_times * fps).astype(np.int32)
frame_indices = frame_indices[frame_indices < video_length]
new_driving_frames = []
for idx in frame_indices:
new_driving_frames.append(driving_frames[idx])
pad_length = math.ceil(len(new_driving_frames) / 48) * 48 - len(new_driving_frames)
new_driving_frames.extend([new_driving_frames[-1]]*pad_length)
return new_driving_frames, pad_length
# Global parameters
model_name = "pretrained_models/SkyReels-A1-5B/"
siglip_name = "pretrained_models/SkyReels-A1-5B/siglip-so400m-patch14-384"
weight_dtype = torch.bfloat16
max_frame_num = 49
sample_size = [480, 720]
# Preload all models in global context
print("Loading models...")
# Load LMK extractor and processors
lmk_extractor = LMKExtractor()
processor = FaceAnimationProcessor(checkpoint='pretrained_models/smirk/SMIRK_em1.pt')
vis = FaceMeshVisualizer2d(forehead_edge=False, draw_head=False, draw_iris=False)
face_helper = FaceRestoreHelper(upscale_factor=1, face_size=512, crop_ratio=(1, 1),
det_model='retinaface_resnet50', save_ext='png', device="cuda")
# Load siglip visual encoder
siglip = SiglipVisionModel.from_pretrained(siglip_name)
siglip_normalize = SiglipImageProcessor.from_pretrained(siglip_name)
# Load diffposetalk
diffposetalk = DiffPoseTalk()
# Load SkyReels models
transformer = CogVideoXTransformer3DModel.from_pretrained(
model_name,
subfolder="transformer"
).to(weight_dtype)
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
lmk_encoder = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="pose_guider",
).to(weight_dtype)
# Set up pipeline
pipe = SkyReelsA1ImagePoseToVideoPipeline.from_pretrained(
model_name,
transformer=transformer,
vae=vae,
lmk_encoder=lmk_encoder,
image_encoder=siglip,
feature_extractor=siglip_normalize,
torch_dtype=torch.bfloat16
)
pipe.to("cuda")
pipe.transformer = torch.compile(pipe.transformer)
pipe.vae.enable_tiling()
pipe.vae = torch.compile(pipe.vae)
# pipe.enable_model_cpu_offload()
print("Models loaded successfully!")
def process_image_audio(image_path, audio_path, guidance_scale=3.0, steps=10, progress=gr.Progress()):
progress(0.1, desc="Processing inputs...")
# Create a directory for outputs if it doesn't exist
output_dir = "gradio_outputs"
os.makedirs(output_dir, exist_ok=True)
# Create temp files for processing
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_video_file, \
tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as temp_output_file:
temp_video_path = temp_video_file.name
final_output_path = temp_output_file.name
# Set seed
# seed = 43
# generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0.2, desc="Processing image...")
# Load and process image
image = load_image(image=image_path)
image = processor.crop_and_resize(image, sample_size[0], sample_size[1])
# Crop face
ref_image, x1, y1 = processor.face_crop(np.array(image))
face_h, face_w, _ = ref_image.shape
source_image = ref_image
progress(0.3, desc="Processing facial landmarks...")
# Process source image
source_outputs, source_tform, image_original = processor.process_source_image(source_image)
progress(0.4, desc="Processing audio...")
# Process audio and generate driving outputs
driving_outputs = diffposetalk.infer_from_file(
audio_path,
source_outputs["shape_params"].view(-1)[:100].detach().cpu().numpy()
)
progress(0.5, desc="Processing landmarks from coefficients...")
# Process landmarks
out_frames = processor.preprocess_lmk3d_from_coef(
source_outputs, source_tform, image_original.shape, driving_outputs
)
out_frames, pad_length = pad_video(out_frames)
print(len(out_frames), pad_length)
# out_frames = parse_video(out_frames, max_frame_num)
rescale_motions = np.zeros_like(image)[np.newaxis, :].repeat(len(out_frames), axis=0)
for ii in range(rescale_motions.shape[0]):
rescale_motions[ii][y1:y1+face_h, x1:x1+face_w] = out_frames[ii]
ref_image_resized = cv2.resize(ref_image, (512, 512))
ref_lmk = lmk_extractor(ref_image_resized[:, :, ::-1])
ref_img = vis.draw_landmarks_v3(
(512, 512), (face_w, face_h),
ref_lmk['lmks'].astype(np.float32), normed=True
)
first_motion = np.zeros_like(np.array(image))
first_motion[y1:y1+face_h, x1:x1+face_w] = ref_img
first_motion = first_motion[np.newaxis, :]
# motions = np.concatenate([first_motion, rescale_motions])
# input_video = motions[:max_frame_num]
# Face alignment
face_helper.clean_all()
face_helper.read_image(np.array(image)[:, :, ::-1])
face_helper.get_face_landmarks_5(only_center_face=True)
face_helper.align_warp_face()
align_face = face_helper.cropped_faces[0]
image_face = align_face[:, :, ::-1]
# Prepare input video
# input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
# input_video = input_video / 255
progress(0.6, desc="Generating animation (this may take a while)...")
# Generate video
out_samples = []
for i in range(0, len(rescale_motions), 48):
motions = np.concatenate([first_motion, rescale_motions[i:i+48]])
input_video = motions
input_video = torch.from_numpy(np.array(input_video)).permute([3, 0, 1, 2]).unsqueeze(0)
input_video = input_video / 255
with torch.no_grad():
sample = pipe(
image=image,
image_face=image_face,
control_video=input_video,
prompt="",
negative_prompt="",
height=480,
width=720,
num_frames=49,
# generator=generator,
guidance_scale=guidance_scale,
num_inference_steps=steps,
)
if i == 0:
out_samples.extend(sample.frames[0])
else:
out_samples.extend(sample.frames[0][1:])
# out_samples = sample.frames[0]
# out_samples = out_samples[2:] # Skip first two frames
if pad_length == 0:
out_samples = out_samples[1:]
else:
out_samples = out_samples[1:-pad_length]
progress(0.8, desc="Creating output video...")
# Export video
export_to_video(out_samples, temp_video_path, fps=12)
progress(0.9, desc="Adding audio to video...")
# Add audio to video
result_path = save_video_with_audio(temp_video_path, audio_path, final_output_path)
# Create side-by-side comparison
target_h, target_w = sample_size[0], sample_size[1]
final_images = []
for i in range(len(out_samples)):
frame1 = image
frame2 = Image.fromarray(np.array(out_samples[i])).convert("RGB")
result = Image.new('RGB', (target_w * 2, target_h))
result.paste(frame1, (0, 0))
result.paste(frame2, (target_w, 0))
final_images.append(np.array(result))
comparison_path = os.path.join(output_dir, "comparison.mp4")
write_mp4(comparison_path, final_images, fps=12)
# Add audio to comparison video
comparison_with_audio = os.path.join(output_dir, "comparison_with_audio.mp4")
comparison_with_audio = save_video_with_audio(comparison_path, audio_path, comparison_with_audio)
progress(1.0, desc="Done!")
torch.cuda.empty_cache()
gc.collect()
return result_path, comparison_with_audio
# Create Gradio interface
with gr.Blocks(title="SkyReels A1 Talking Head") as app:
gr.Markdown("# SkyReels A1 Talking Head")
gr.Markdown('''Upload a portrait image and an audio file to animate the face. 💡 Enjoying this demo? Share your feedback or review, and you might earn exclusive rewards! 🚀✨
📩 [Contact us on Discord](https://discord.com/invite/PwM6NYtccQ) for details. 🔥 [Code](https://github.com/SkyworkAI/SkyReels-A1) [Huggingface](https://huggingface.co/Skywork/SkyReels-A1)''')
with gr.Row():
with gr.Column():
with gr.Row():
image_input = gr.Image(type="filepath", label="Portrait Image")
audio_input = gr.Audio(type="filepath", label="Driving Audio")
with gr.Row():
guidance_scale = gr.Slider(minimum=1.0, maximum=7.0, value=3.0, step=0.1, label="Guidance Scale")
inference_steps = gr.Slider(minimum=5, maximum=30, value=10, step=1, label="Inference Steps")
generate_button = gr.Button("Generate Animation", variant="primary")
with gr.Column():
output_video = gr.Video(label="Animation Result")
comparison_video = gr.Video(label="Side-by-Side Comparison")
generate_button.click(
fn=process_image_audio,
inputs=[image_input, audio_input, guidance_scale, inference_steps],
outputs=[output_video, comparison_video]
)
gr.Markdown("""
## Instructions
1. Upload a portrait image (frontal face works best)
2. Upload an audio file (wav format recommended)
3. Adjust parameters if needed
4. Click "Generate Animation" to create the video
Note: Processing may take several minutes depending on your hardware.
""")
if __name__ == "__main__":
app.launch(share=True) |