Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,6 @@ This script uses the LangChain Language Model API to answer questions using Retr
|
|
4 |
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
|
5 |
generate responses.
|
6 |
"""
|
7 |
-
import os
|
8 |
-
import streamlit as st
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
from PyPDF2 import PdfReader
|
11 |
-
from langchain.text_splitter import CharacterTextSplitter
|
12 |
-
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
13 |
-
from langchain.vectorstores import FAISS
|
14 |
-
from langchain.chat_models import ChatOpenAI
|
15 |
-
from langchain.memory import ConversationBufferMemory
|
16 |
-
from langchain.chains import ConversationalRetrievalChain
|
17 |
-
from htmlTemplates import css, bot_template, user_template
|
18 |
-
from langchain.llms import HuggingFaceHub
|
19 |
|
20 |
import os
|
21 |
import streamlit as st
|
@@ -106,6 +94,18 @@ def main():
|
|
106 |
if user_question:
|
107 |
handle_userinput(user_question)
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
with st.sidebar:
|
110 |
st.subheader("Your documents")
|
111 |
pdf_docs = st.file_uploader(
|
|
|
4 |
and FAISS vector stores. It also uses the Mistral huggingface inference endpoint to
|
5 |
generate responses.
|
6 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
import os
|
9 |
import streamlit as st
|
|
|
94 |
if user_question:
|
95 |
handle_userinput(user_question)
|
96 |
|
97 |
+
# Add Hugging Face token input
|
98 |
+
huggingface_token = st.text_input("Enter your Hugging Face API token:", type="password")
|
99 |
+
if huggingface_token:
|
100 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
|
101 |
+
|
102 |
+
user_question = st.text_input("Ask a question about your documents:")
|
103 |
+
if user_question:
|
104 |
+
if not huggingface_token:
|
105 |
+
st.error("Please enter your Hugging Face API token to proceed.")
|
106 |
+
else:
|
107 |
+
handle_userinput(user_question)
|
108 |
+
|
109 |
with st.sidebar:
|
110 |
st.subheader("Your documents")
|
111 |
pdf_docs = st.file_uploader(
|