Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -17,103 +17,91 @@ from langchain.chains import ConversationalRetrievalChain
|
|
17 |
from htmlTemplates import css, bot_template, user_template
|
18 |
from langchain.llms import HuggingFaceHub
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def get_pdf_text(pdf_docs):
|
21 |
text = ""
|
22 |
for pdf in pdf_docs:
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
text += page.extract_text()
|
27 |
-
except Exception as e:
|
28 |
-
st.error(f"Error extracting text from PDF: {e}")
|
29 |
return text
|
30 |
|
31 |
def get_text_chunks(text):
|
32 |
text_splitter = CharacterTextSplitter(
|
33 |
-
separator="\n",
|
|
|
|
|
|
|
34 |
)
|
35 |
-
|
36 |
-
chunks = text_splitter.split_text(text)
|
37 |
-
except Exception as e:
|
38 |
-
st.error(f"Error splitting text into chunks: {e}")
|
39 |
-
chunks = []
|
40 |
return chunks
|
41 |
|
42 |
def get_vectorstore(text_chunks):
|
43 |
model = "BAAI/bge-base-en-v1.5"
|
44 |
-
encode_kwargs = {
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
52 |
-
except Exception as e:
|
53 |
-
st.error(f"Error creating vector store: {e}")
|
54 |
-
vectorstore = None
|
55 |
return vectorstore
|
56 |
|
57 |
def get_conversation_chain(vectorstore):
|
58 |
-
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
llm=llm, retriever=vectorstore.as_retriever(), memory=memory
|
69 |
-
)
|
70 |
-
except Exception as e:
|
71 |
-
st.error(f"Error creating conversation chain: {e}")
|
72 |
-
conversation_chain = None
|
73 |
return conversation_chain
|
74 |
|
75 |
def handle_userinput(user_question):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
st.error(f"Error handling user input: {e}")
|
91 |
|
92 |
def main():
|
93 |
-
|
94 |
-
|
95 |
-
page_icon=":books:",
|
96 |
-
)
|
97 |
-
|
98 |
-
st.markdown("# Chat with a Bot")
|
99 |
-
st.markdown("This bot tries to answer questions about multiple PDFs. Let the processing of the PDF finish before adding your question. 🙏🏾")
|
100 |
-
|
101 |
st.write(css, unsafe_allow_html=True)
|
102 |
|
103 |
-
huggingface_token = st.text_input("Enter your HuggingFace Hub token", type="password")
|
104 |
-
#openai_api_key = st.text_input("Enter your OpenAI API key", type="password")
|
105 |
-
|
106 |
-
if huggingface_token:
|
107 |
-
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_token
|
108 |
-
#if openai_api_key:
|
109 |
-
# os.environ["OPENAI_API_KEY"] = openai_api_key
|
110 |
-
|
111 |
if "conversation" not in st.session_state:
|
112 |
st.session_state.conversation = None
|
113 |
if "chat_history" not in st.session_state:
|
114 |
st.session_state.chat_history = None
|
115 |
|
116 |
-
st.header("Chat with
|
117 |
user_question = st.text_input("Ask a question about your documents:")
|
118 |
if user_question:
|
119 |
handle_userinput(user_question)
|
@@ -125,20 +113,10 @@ def main():
|
|
125 |
)
|
126 |
if st.button("Process"):
|
127 |
with st.spinner("Processing"):
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
# get the text chunks
|
133 |
-
text_chunks = get_text_chunks(raw_text)
|
134 |
-
|
135 |
-
# create vector store
|
136 |
-
vectorstore = get_vectorstore(text_chunks)
|
137 |
-
|
138 |
-
# create conversation chain
|
139 |
-
st.session_state.conversation = get_conversation_chain(vectorstore)
|
140 |
-
except Exception as e:
|
141 |
-
st.error(f"Error processing PDF files: {e}")
|
142 |
|
143 |
if __name__ == "__main__":
|
144 |
main()
|
|
|
17 |
from htmlTemplates import css, bot_template, user_template
|
18 |
from langchain.llms import HuggingFaceHub
|
19 |
|
20 |
+
import os
|
21 |
+
import streamlit as st
|
22 |
+
from dotenv import load_dotenv
|
23 |
+
from PyPDF2 import PdfReader
|
24 |
+
from langchain.text_splitter import CharacterTextSplitter
|
25 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
26 |
+
from langchain.vectorstores import FAISS
|
27 |
+
from langchain.chat_models import ChatOpenAI
|
28 |
+
from langchain.memory import ConversationBufferMemory
|
29 |
+
from langchain.chains import ConversationalRetrievalChain
|
30 |
+
from htmlTemplates import css, bot_template, user_template
|
31 |
+
from langchain.llms import HuggingFaceHub
|
32 |
+
from langchain.chains import RetrievalQA
|
33 |
+
|
34 |
def get_pdf_text(pdf_docs):
|
35 |
text = ""
|
36 |
for pdf in pdf_docs:
|
37 |
+
pdf_reader = PdfReader(pdf)
|
38 |
+
for page in pdf_reader.pages:
|
39 |
+
text += page.extract_text()
|
|
|
|
|
|
|
40 |
return text
|
41 |
|
42 |
def get_text_chunks(text):
|
43 |
text_splitter = CharacterTextSplitter(
|
44 |
+
separator="\n",
|
45 |
+
chunk_size=1000,
|
46 |
+
chunk_overlap=200,
|
47 |
+
length_function=len
|
48 |
)
|
49 |
+
chunks = text_splitter.split_text(text)
|
|
|
|
|
|
|
|
|
50 |
return chunks
|
51 |
|
52 |
def get_vectorstore(text_chunks):
|
53 |
model = "BAAI/bge-base-en-v1.5"
|
54 |
+
encode_kwargs = {"normalize_embeddings": True}
|
55 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
56 |
+
model_name=model,
|
57 |
+
encode_kwargs=encode_kwargs,
|
58 |
+
model_kwargs={"device": "cpu"}
|
59 |
+
)
|
60 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
|
|
|
|
|
|
|
|
61 |
return vectorstore
|
62 |
|
63 |
def get_conversation_chain(vectorstore):
|
64 |
+
llm = HuggingFaceHub(
|
65 |
+
repo_id="mistralai/Mistral-7B-v0.3",
|
66 |
+
model_kwargs={"temperature": 0.5, "max_length": 4000},
|
67 |
+
)
|
68 |
|
69 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
70 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
71 |
+
llm=llm,
|
72 |
+
retriever=vectorstore.as_retriever(),
|
73 |
+
memory=memory,
|
74 |
+
return_source_documents=True # Add this line to return source documents
|
75 |
+
)
|
|
|
|
|
|
|
|
|
|
|
76 |
return conversation_chain
|
77 |
|
78 |
def handle_userinput(user_question):
|
79 |
+
response = st.session_state.conversation({"question": user_question})
|
80 |
+
st.session_state.chat_history = response["chat_history"]
|
81 |
+
|
82 |
+
for i, message in enumerate(st.session_state.chat_history):
|
83 |
+
if i % 2 == 0:
|
84 |
+
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
85 |
+
else:
|
86 |
+
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True)
|
87 |
+
|
88 |
+
# Display references
|
89 |
+
if "source_documents" in response:
|
90 |
+
st.write("References:")
|
91 |
+
for doc in response["source_documents"]:
|
92 |
+
st.write(f"- {doc.metadata.get('source', 'Unknown source')}, page {doc.metadata.get('page', 'Unknown page')}")
|
|
|
93 |
|
94 |
def main():
|
95 |
+
load_dotenv()
|
96 |
+
st.set_page_config(page_title="Chat with Multiple PDFs", page_icon=":books:")
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
st.write(css, unsafe_allow_html=True)
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
if "conversation" not in st.session_state:
|
100 |
st.session_state.conversation = None
|
101 |
if "chat_history" not in st.session_state:
|
102 |
st.session_state.chat_history = None
|
103 |
|
104 |
+
st.header("Chat with Multiple PDFs :books:")
|
105 |
user_question = st.text_input("Ask a question about your documents:")
|
106 |
if user_question:
|
107 |
handle_userinput(user_question)
|
|
|
113 |
)
|
114 |
if st.button("Process"):
|
115 |
with st.spinner("Processing"):
|
116 |
+
raw_text = get_pdf_text(pdf_docs)
|
117 |
+
text_chunks = get_text_chunks(raw_text)
|
118 |
+
vectorstore = get_vectorstore(text_chunks)
|
119 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
main()
|