Spaces:
Sleeping
Sleeping
File size: 1,858 Bytes
37e00b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# π Show Filtered Data Table
st.subheader("π Pole Data Table")
st.dataframe(filtered_df)
# π Bar Chart - Power Generation
st.subheader("π Power Generation per Pole")
fig_bar = px.bar(
filtered_df,
x='Name',
y='Power_Generation__c',
color='Status__c',
labels={'Power_Generation__c': 'Power Generated (kWh)'},
title="Power Output by Pole",
height=400
)
st.plotly_chart(fig_bar, use_container_width=True)
# β οΈ Pie Chart - Fault Status Distribution
st.subheader("β οΈ Fault Status Distribution")
fault_data = filtered_df['Fault_Status__c'].value_counts().reset_index()
fault_data.columns = ['Fault Status', 'Count']
fig_pie = px.pie(
fault_data,
names='Fault Status',
values='Count',
title="Fault Breakdown",
height=400
)
st.plotly_chart(fig_pie, use_container_width=True)
# π Line Chart - Pole Installations Over Time
st.subheader("π Installation Trend")
install_trend = filtered_df.groupby(filtered_df['Installed_Date__c'].dt.to_period('M')).size()
install_trend.index = install_trend.index.to_timestamp()
fig_line_install = px.line(
x=install_trend.index,
y=install_trend.values,
labels={"x": "Month", "y": "Poles Installed"},
title="Pole Installations Over Time",
markers=True
)
st.plotly_chart(fig_line_install, use_container_width=True)
# π οΈ Line Chart - Maintenance Activity
st.subheader("π οΈ Maintenance Trend")
maintenance_trend = filtered_df.groupby(filtered_df['Last_Maintenance_Date__c'].dt.to_period('M')).size()
maintenance_trend.index = maintenance_trend.index.to_timestamp()
fig_line_maint = px.line(
x=maintenance_trend.index,
y=maintenance_trend.values,
labels={"x": "Month", "y": "Maintenance Events"},
title="Maintenance Activities Over Time",
markers=True
)
st.plotly_chart(fig_line_maint, use_container_width=True)
|