Spaces:
Sleeping
Sleeping
Create Visualization Code
Browse files- Visualization Code +55 -0
Visualization Code
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π Show Filtered Data Table
|
2 |
+
st.subheader("π Pole Data Table")
|
3 |
+
st.dataframe(filtered_df)
|
4 |
+
|
5 |
+
# π Bar Chart - Power Generation
|
6 |
+
st.subheader("π Power Generation per Pole")
|
7 |
+
fig_bar = px.bar(
|
8 |
+
filtered_df,
|
9 |
+
x='Name',
|
10 |
+
y='Power_Generation__c',
|
11 |
+
color='Status__c',
|
12 |
+
labels={'Power_Generation__c': 'Power Generated (kWh)'},
|
13 |
+
title="Power Output by Pole",
|
14 |
+
height=400
|
15 |
+
)
|
16 |
+
st.plotly_chart(fig_bar, use_container_width=True)
|
17 |
+
|
18 |
+
# β οΈ Pie Chart - Fault Status Distribution
|
19 |
+
st.subheader("β οΈ Fault Status Distribution")
|
20 |
+
fault_data = filtered_df['Fault_Status__c'].value_counts().reset_index()
|
21 |
+
fault_data.columns = ['Fault Status', 'Count']
|
22 |
+
fig_pie = px.pie(
|
23 |
+
fault_data,
|
24 |
+
names='Fault Status',
|
25 |
+
values='Count',
|
26 |
+
title="Fault Breakdown",
|
27 |
+
height=400
|
28 |
+
)
|
29 |
+
st.plotly_chart(fig_pie, use_container_width=True)
|
30 |
+
|
31 |
+
# π Line Chart - Pole Installations Over Time
|
32 |
+
st.subheader("π Installation Trend")
|
33 |
+
install_trend = filtered_df.groupby(filtered_df['Installed_Date__c'].dt.to_period('M')).size()
|
34 |
+
install_trend.index = install_trend.index.to_timestamp()
|
35 |
+
fig_line_install = px.line(
|
36 |
+
x=install_trend.index,
|
37 |
+
y=install_trend.values,
|
38 |
+
labels={"x": "Month", "y": "Poles Installed"},
|
39 |
+
title="Pole Installations Over Time",
|
40 |
+
markers=True
|
41 |
+
)
|
42 |
+
st.plotly_chart(fig_line_install, use_container_width=True)
|
43 |
+
|
44 |
+
# π οΈ Line Chart - Maintenance Activity
|
45 |
+
st.subheader("π οΈ Maintenance Trend")
|
46 |
+
maintenance_trend = filtered_df.groupby(filtered_df['Last_Maintenance_Date__c'].dt.to_period('M')).size()
|
47 |
+
maintenance_trend.index = maintenance_trend.index.to_timestamp()
|
48 |
+
fig_line_maint = px.line(
|
49 |
+
x=maintenance_trend.index,
|
50 |
+
y=maintenance_trend.values,
|
51 |
+
labels={"x": "Month", "y": "Maintenance Events"},
|
52 |
+
title="Maintenance Activities Over Time",
|
53 |
+
markers=True
|
54 |
+
)
|
55 |
+
st.plotly_chart(fig_line_maint, use_container_width=True)
|