Text2img / app.py
Silence1412's picture
Update app.py
ccd9bce
raw
history blame
1.88 kB
import streamlit as st
import cv2 as cv
import time
import torch
from diffusers import StableDiffusionPipeline
def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
pipe = StableDiffusionPipeline.from_pretrained(loc)
pipe = pipe.to(mch)
return pipe
# t2i = st.title("""
# Txt2Img
# ###### `CLICK "Create_Update_Model"` :
# - `FIRST RUN OF THE CODE`
# - `CHANGING MODEL`""")
# the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
# "CompVis/stable-diffusion-v1-4"))
# create = st.button("Create The Model")
# if create:
# st.session_state.t2m_mod = create_model(loc=the_type)
the_type = "stabilityai/stable-diffusion-2-1-base"
st.session_state.t2m_mod = create_model(loc=the_type)
prom = st.text_input("Prompt",'')
c1,c2,c3,c4 = st.columns([1,1,1,2])
c5,c6 = st.columns(2)
with c1:
bu_1 = st.text_input("Seed",'999')
with c2:
bu_2 = st.text_input("Steps",'12')
with c3:
bu_3 = st.text_input("Number of Images",'1')
with c5:
sl_1 = st.slider("Width",128,1024,512,8)
with c6:
sl_2 = st.slider("hight",128,1024,512,8)
st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))
create = st.button("Imagine")
if create:
model = st.session_state.t2m_mod
generator = st.session_state.generator
if int(bu_3) == 1 :
IMG = model(prom, width=int(sl_1), height=int(sl_2),
num_inference_steps=int(bu_2),
# guidance_scale = bu_3,
generator=generator).images[0]
st.image(IMG)
else :
PROMS = [prom]*int(bu_3)
IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
num_inference_steps=int(bu_2),
# guidance_scale = bu_3,
generator=generator).images
st.image(IMGS)