File size: 1,878 Bytes
44ee4e3
 
 
 
 
 
 
 
 
 
 
 
9c2f138
 
 
 
 
44ee4e3
f4489df
 
44ee4e3
f4489df
44ee4e3
f4489df
 
 
2c2bd10
f4489df
44ee4e3
c374e9f
8255c42
44ee4e3
0580dd5
2c2bd10
44ee4e3
 
 
 
 
94088a8
ccd9bce
44ee4e3
2c2bd10
 
44ee4e3
 
 
 
 
 
007df00
44ee4e3
 
 
 
 
 
 
ccd9bce
44ee4e3
 
 
 
 
 
 
 
ccd9bce
44ee4e3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import streamlit as st
import cv2 as cv
import time
import torch
from diffusers import StableDiffusionPipeline


def create_model(loc = "stabilityai/stable-diffusion-2-1-base", mch = 'cpu'):
    pipe = StableDiffusionPipeline.from_pretrained(loc)
    pipe = pipe.to(mch)
    return pipe

# t2i = st.title("""
# Txt2Img
# ###### `CLICK "Create_Update_Model"` :
# - `FIRST RUN OF THE CODE`
# - `CHANGING MODEL`""")

# the_type = st.selectbox("Model",("stabilityai/stable-diffusion-2-1-base",
#                                       "CompVis/stable-diffusion-v1-4"))

# create = st.button("Create The Model")

# if create:
#     st.session_state.t2m_mod = create_model(loc=the_type)

the_type = "stabilityai/stable-diffusion-2-1-base"
st.session_state.t2m_mod = create_model(loc=the_type)


prom = st.text_input("Prompt",'')

c1,c2,c3,c4 = st.columns([1,1,1,2])
c5,c6 = st.columns(2)

with c1:
  bu_1 = st.text_input("Seed",'999')
with c2:
  bu_2 = st.text_input("Steps",'12')
with c3:
  bu_3 = st.text_input("Number of Images",'1')
with c5:
  sl_1 = st.slider("Width",128,1024,512,8)
with c6:
  sl_2 = st.slider("hight",128,1024,512,8)

st.session_state.generator = torch.Generator("cpu").manual_seed(int(bu_1))

create = st.button("Imagine")


if create:
    model = st.session_state.t2m_mod
    generator = st.session_state.generator

    if int(bu_3) == 1 :
      IMG = model(prom, width=int(sl_1), height=int(sl_2),
                    num_inference_steps=int(bu_2),
                    # guidance_scale = bu_3,
                    generator=generator).images[0]
      st.image(IMG)
        
    else :
      PROMS = [prom]*int(bu_3)
        
      IMGS = model(PROMS, width=int(sl_1), height=int(sl_2),
                     num_inference_steps=int(bu_2),
                     # guidance_scale = bu_3,
                     generator=generator).images
    
      st.image(IMGS)