Spaces:
Sleeping
Sleeping
File size: 26,327 Bytes
9a9f2ab a9b4255 9a9f2ab a9b4255 9a9f2ab a9b4255 9a9f2ab a9b4255 9a9f2ab a9b4255 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
# streamlit_app.py - Bolt Driver Recommendation System
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime, timedelta
import folium
from folium.plugins import HeatMap, MarkerCluster
from streamlit_folium import folium_static
import pickle
import os
# Set page configuration
st.set_page_config(
page_title="Bolt Driver Recommendation System",
page_icon="🚖",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS styling
st.markdown("""
<style>
.main-header {
font-size: 2.5rem;
color: #272D37;
text-align: center;
margin-bottom: 1rem;
font-weight: bold;
}
.sub-header {
font-size: 1.8rem;
color: #272D37;
margin-top: 1.5rem;
margin-bottom: 1rem;
}
.section-header {
font-size: 1.3rem;
color: #272D37;
margin-top: 1rem;
margin-bottom: 0.5rem;
font-weight: bold;
}
.highlight {
background-color: #F0F2F6;
padding: 1rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
}
.card {
background-color: white;
border-radius: 0.5rem;
padding: 1.5rem;
box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15);
margin-bottom: 1rem;
}
.info-box {
background-color: #e8f4f8;
border-left: 5px solid #4e8cff;
padding: 0.8rem;
border-radius: 0.3rem;
margin-bottom: 1rem;
}
.metric-container {
display: flex;
justify-content: space-between;
gap: 1rem;
}
.metric-card {
background-color: white;
border-radius: 0.5rem;
padding: 1rem;
text-align: center;
box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15);
flex: 1;
}
.metric-value {
font-size: 1.8rem;
font-weight: bold;
color: #272D37;
}
.metric-label {
font-size: 0.9rem;
color: #6e707e;
}
</style>
""", unsafe_allow_html=True)
# Header and app description
st.markdown('<div class="main-header">Bolt Driver Recommendation System</div>', unsafe_allow_html=True)
with st.container():
st.markdown('<div class="info-box">This application helps Bolt drivers find optimal areas to position themselves based on predicted ride demand and value. The recommendations are personalized based on time, location, and driver preferences.</div>', unsafe_allow_html=True)
class DemandPredictionModel:
def __init__(self):
"""Initialize the demand prediction model"""
# In a real app, we would load the model from a file
# Here we'll create a dummy version for demonstration
self.setup_demo_data()
def setup_demo_data(self):
"""Set up demonstration data based on our analysis"""
# Define geographic boundaries (Tallinn)
self.min_lat, self.max_lat = 59.32, 59.57
self.min_lng, self.max_lng = 24.51, 24.97
# Create grid
grid_size = 10
self.lat_step = (self.max_lat - self.min_lat) / grid_size
self.lng_step = (self.max_lng - self.min_lng) / grid_size
# Generate lat/lng bins
self.lat_bins = np.linspace(self.min_lat, self.max_lat, grid_size + 1)
self.lng_bins = np.linspace(self.min_lng, self.max_lng, grid_size + 1)
# Create demand patterns based on our findings
self.demand_patterns = self.create_demand_patterns()
def create_demand_patterns(self):
"""Create realistic demand patterns based on our analysis"""
# Initialize 4D array: [day_of_week][hour][lat_bin][lng_bin]
days = 7
hours = 24
lat_bins = len(self.lat_bins) - 1
lng_bins = len(self.lng_bins) - 1
demand_patterns = np.zeros((days, hours, lat_bins, lng_bins))
value_patterns = np.zeros((days, hours, lat_bins, lng_bins))
# Key areas from our analysis
city_center = {"lat_idx": 4, "lng_idx": 5, "base_demand": 300, "value": 1.91}
secondary_hub = {"lat_idx": 4, "lng_idx": 4, "base_demand": 150, "value": 1.94}
university_area = {"lat_idx": 3, "lng_idx": 4, "base_demand": 80, "value": 2.89}
residential_zone = {"lat_idx": 3, "lng_idx": 3, "base_demand": 60, "value": 1.85}
business_district = {"lat_idx": 4, "lng_idx": 6, "base_demand": 50, "value": 1.56}
hotspots = [city_center, secondary_hub, university_area, residential_zone, business_district]
# Time patterns
hourly_factors = {
0: 0.5, 1: 0.4, 2: 0.3, 3: 0.3, 4: 0.3, 5: 0.5,
6: 0.8, 7: 0.9, 8: 0.7, 9: 0.6, 10: 0.6, 11: 0.6,
12: 0.7, 13: 0.8, 14: 0.9, 15: 1.0, 16: 1.0, 17: 0.8,
18: 0.7, 19: 0.7, 20: 0.7, 21: 0.8, 22: 0.9, 23: 0.7
}
# Value patterns - certain times have higher values
value_factors = {
0: 1.4, 1: 0.8, 2: 1.0, 3: 0.6, 4: 1.6, 5: 0.7,
6: 0.9, 7: 1.1, 8: 1.0, 9: 0.7, 10: 0.8, 11: 1.1,
12: 0.8, 13: 0.9, 14: 1.6, 15: 0.9, 16: 0.8, 17: 1.0,
18: 0.8, 19: 0.7, 20: 1.1, 21: 0.8, 22: 1.0, 23: 1.2
}
# Day patterns
day_factors = {
0: 0.8, # Monday
1: 0.9, # Tuesday
2: 0.9, # Wednesday
3: 0.85, # Thursday
4: 0.95, # Friday
5: 1.0, # Saturday
6: 0.8 # Sunday
}
# Fill the demand patterns
for day in range(days):
for hour in range(hours):
# Apply base patterns with temporal variations
time_factor = hourly_factors[hour] * day_factors[day]
# Add some specific day-hour combinations
# Tuesday and Thursday early morning and late night have higher values
special_value_factor = 1.0
if (day == 1 or day == 3) and (hour in [4, 22, 23]):
special_value_factor = 2.0
for spot in hotspots:
lat_idx, lng_idx = spot["lat_idx"], spot["lng_idx"]
base_demand = spot["base_demand"]
base_value = spot["value"]
# Set demand
demand = base_demand * time_factor
# Add some randomness
demand *= np.random.uniform(0.9, 1.1)
demand_patterns[day, hour, lat_idx, lng_idx] = demand
# Set value
value = base_value * value_factors[hour] * special_value_factor
# Add some randomness
value *= np.random.uniform(0.95, 1.05)
value_patterns[day, hour, lat_idx, lng_idx] = value
# Add some spillover to neighboring cells
for d_lat in [-1, 0, 1]:
for d_lng in [-1, 0, 1]:
if d_lat == 0 and d_lng == 0:
continue
n_lat = lat_idx + d_lat
n_lng = lng_idx + d_lng
if (0 <= n_lat < lat_bins and 0 <= n_lng < lng_bins):
# Spillover decreases with distance
distance = np.sqrt(d_lat**2 + d_lng**2)
spillover_factor = 0.5 / distance
demand_patterns[day, hour, n_lat, n_lng] += demand * spillover_factor
value_patterns[day, hour, n_lat, n_lng] += value * 0.9 # Slightly lower values in spillover areas
# Create combined dict
patterns = {
"demand": demand_patterns,
"value": value_patterns
}
return patterns
def predict(self, day, hour, current_lat=None, current_lng=None, value_weight=0.5, top_n=5):
"""
Predict high-demand areas for a given day and hour
Parameters:
- day: Day of week (0=Monday, 6=Sunday)
- hour: Hour of day (0-23)
- current_lat: Driver's current latitude (optional)
- current_lng: Driver's current longitude (optional)
- value_weight: Weight for balancing demand vs value (0-1)
- top_n: Number of recommendations to return
Returns:
- List of recommended areas
"""
demand_matrix = self.demand_patterns["demand"][day, hour]
value_matrix = self.demand_patterns["value"][day, hour]
# Flatten the matrices for ranking
recommendations = []
for lat_idx in range(len(self.lat_bins) - 1):
for lng_idx in range(len(self.lng_bins) - 1):
demand = demand_matrix[lat_idx, lng_idx]
value = value_matrix[lat_idx, lng_idx]
if demand > 0:
center_lat = (self.lat_bins[lat_idx] + self.lat_bins[lat_idx + 1]) / 2
center_lng = (self.lng_bins[lng_idx] + self.lng_bins[lng_idx + 1]) / 2
# Calculate distance if driver location provided
distance_km = None
if current_lat is not None and current_lng is not None:
# Calculate Haversine distance
R = 6371 # Earth radius in kilometers
dLat = np.radians(current_lat - center_lat)
dLon = np.radians(current_lng - center_lng)
a = (np.sin(dLat/2) * np.sin(dLat/2) +
np.cos(np.radians(current_lat)) * np.cos(np.radians(center_lat)) *
np.sin(dLon/2) * np.sin(dLon/2))
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a))
distance_km = R * c
# Scale demand and value for scoring
max_demand = np.max(demand_matrix)
max_value = np.max(value_matrix)
demand_score = demand / max_demand if max_demand > 0 else 0
value_score = value / max_value if max_value > 0 else 0
# Combined score based on value weight
score = (1 - value_weight) * demand_score + value_weight * value_score
# Adjust for distance if available
if distance_km is not None:
# Distance penalty (decreases as distance increases)
# Effective range ~10km
distance_penalty = 1.0 / (1.0 + distance_km / 5.0)
adjusted_score = score * distance_penalty
else:
adjusted_score = score
recommendations.append({
"center_lat": center_lat,
"center_lng": center_lng,
"predicted_rides": demand,
"avg_value": value,
"expected_value": demand * value,
"score": score,
"adjusted_score": adjusted_score,
"distance_km": distance_km
})
# Sort by adjusted score
sorted_recommendations = sorted(recommendations, key=lambda x: x["adjusted_score"], reverse=True)
return sorted_recommendations[:top_n]
# Main application flow
def main():
# Initialize model
model = DemandPredictionModel()
# Sidebar for inputs
with st.sidebar:
st.markdown('<div class="section-header">Driver Options</div>', unsafe_allow_html=True)
# Time selection
st.subheader("Time Selection")
today = datetime.now()
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
selected_day = st.selectbox("Day of Week", days, index=today.weekday())
day_idx = days.index(selected_day)
selected_hour = st.slider("Hour of Day", 0, 23, today.hour, format="%d:00")
# Location input
st.subheader("Driver Location")
use_location = st.checkbox("Use Current Location", value=True)
# Default to Tallinn center
default_lat, default_lng = 59.436, 24.753
if use_location:
col1, col2 = st.columns(2)
with col1:
current_lat = st.number_input("Latitude", value=default_lat, format="%.5f", step=0.001)
with col2:
current_lng = st.number_input("Longitude", value=default_lng, format="%.5f", step=0.001)
else:
current_lat, current_lng = None, None
# Preference settings
st.subheader("Preferences")
num_recommendations = st.slider("Number of Recommendations", 3, 10, 5)
value_weight = st.slider(
"Optimization Balance",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.1,
help="0 = Focus on ride count, 1 = Focus on ride value"
)
# Advanced options for visual
st.subheader("Display Options")
show_heatmap = st.checkbox("Show Demand Heatmap", value=True)
# Generate recommendations
recommendations = model.predict(
day=day_idx,
hour=selected_hour,
current_lat=current_lat if use_location else None,
current_lng=current_lng if use_location else None,
value_weight=value_weight,
top_n=num_recommendations
)
# Main content area
col1, col2 = st.columns([3, 2])
with col1:
st.markdown('<div class="section-header">Demand Map</div>', unsafe_allow_html=True)
try:
# Create map
m = folium.Map(
location=[59.436, 24.753], # Tallinn center
zoom_start=12,
tiles="CartoDB positron"
)
# Add driver marker if location provided
if use_location:
folium.Marker(
location=[current_lat, current_lng],
popup="Your Location",
icon=folium.Icon(color="blue", icon="user", prefix="fa"),
tooltip="Your Current Location"
).add_to(m)
# Add recommendation markers
for i, rec in enumerate(recommendations):
folium.CircleMarker(
location=[rec["center_lat"], rec["center_lng"]],
radius=20,
color="red",
fill=True,
fill_color="red",
fill_opacity=0.6,
popup=f"""
<b>Recommendation {i+1}</b><br>
Expected rides: {rec['predicted_rides']:.1f}<br>
Avg value: €{rec['avg_value']:.2f}<br>
Expected value: €{rec['expected_value']:.2f}<br>
{f'Distance: {rec["distance_km"]:.2f} km' if rec["distance_km"] is not None else ''}
"""
).add_to(m)
# Add number label - using HTML directly to avoid the split error
folium.Marker(
location=[rec["center_lat"], rec["center_lng"]],
icon=folium.DivIcon(
html=f'<div style="font-size:12pt;color:white;font-weight:bold;text-align:center;width:25px;height:25px;line-height:25px;">{i+1}</div>'
)
).add_to(m)
# Add heatmap if enabled
if show_heatmap:
# Get a larger set of predictions for the heatmap
all_predictions = model.predict(day_idx, selected_hour, top_n=100)
heat_data = [
[pred["center_lat"], pred["center_lng"], pred["predicted_rides"]]
for pred in all_predictions
]
# Add heatmap layer
HeatMap(
heat_data,
radius=15,
gradient={
0.2: 'blue',
0.4: 'lime',
0.6: 'yellow',
0.8: 'orange',
1.0: 'red'
},
name="Demand Heatmap",
show=True
).add_to(m)
# Add layer control
folium.LayerControl().add_to(m)
# Display the map
folium_static(m, width=700)
except Exception as e:
st.error(f"Error rendering map: {e}")
st.info("Showing tabular results instead.")
with col2:
st.markdown('<div class="section-header">Recommendations</div>', unsafe_allow_html=True)
# Create metrics for top recommendation
if recommendations:
top_rec = recommendations[0]
st.markdown('<div class="highlight">', unsafe_allow_html=True)
st.subheader("Top Recommendation")
col1, col2 = st.columns(2)
with col1:
st.metric("Expected Rides", f"{top_rec['predicted_rides']:.1f}")
st.metric("Avg Value", f"€{top_rec['avg_value']:.2f}")
with col2:
st.metric("Expected Value", f"€{top_rec['expected_value']:.2f}")
if top_rec["distance_km"] is not None:
st.metric("Distance", f"{top_rec['distance_km']:.2f} km")
st.markdown(f"Location: [{top_rec['center_lat']:.4f}, {top_rec['center_lng']:.4f}]")
st.markdown('</div>', unsafe_allow_html=True)
# Create formatted table of all recommendations
st.subheader("All Recommendations")
rec_df = pd.DataFrame(recommendations)
# Format for display
display_df = pd.DataFrame({
"Rank": range(1, len(rec_df) + 1),
"Expected Rides": rec_df["predicted_rides"].round(1),
"Avg Value (€)": rec_df["avg_value"].round(2),
"Expected Value (€)": rec_df["expected_value"].round(2)
})
# Add distance if available
if "distance_km" in rec_df.columns and rec_df["distance_km"].notna().any():
display_df["Distance (km)"] = rec_df["distance_km"].round(2)
st.table(display_df)
# Add explanation for score calculation
st.markdown('<div class="info-box">', unsafe_allow_html=True)
st.markdown("**How recommendations are calculated:**")
st.markdown("""
- Ride count predictions based on historical patterns
- Value based on average ride fares
- Recommendations balanced by your preferences
- Distance factored in when location is provided
""")
st.markdown('</div>', unsafe_allow_html=True)
# Time series visualization
st.markdown('<div class="section-header">Demand Patterns Analysis</div>', unsafe_allow_html=True)
tab1, tab2 = st.tabs(["Hourly Patterns", "Daily Patterns"])
with tab1:
# Generate hourly demand data for the selected day
hourly_data = []
for hour in range(24):
hour_recs = model.predict(day_idx, hour, top_n=100)
total_demand = sum(rec["predicted_rides"] for rec in hour_recs)
avg_value = sum(rec["avg_value"] * rec["predicted_rides"] for rec in hour_recs) / total_demand if total_demand > 0 else 0
hourly_data.append({
"hour": hour,
"demand": total_demand,
"value": avg_value
})
hourly_df = pd.DataFrame(hourly_data)
# Create dual-axis chart
fig = go.Figure()
# Add demand line
fig.add_trace(go.Scatter(
x=hourly_df["hour"],
y=hourly_df["demand"],
name="Demand",
line=dict(color="#4e8cff", width=3),
hovertemplate="Hour: %{x}<br>Demand: %{y:.1f}<extra></extra>"
))
# Add value line on secondary axis
fig.add_trace(go.Scatter(
x=hourly_df["hour"],
y=hourly_df["value"],
name="Avg Value (€)",
line=dict(color="#ff6b6b", width=3, dash="dot"),
yaxis="y2",
hovertemplate="Hour: %{x}<br>Avg Value: €%{y:.2f}<extra></extra>"
))
# Highlight selected hour
fig.add_vline(
x=selected_hour,
line_width=2,
line_dash="dash",
line_color="green",
annotation_text="Selected Hour",
annotation_position="top right"
)
# Update layout
fig.update_layout(
title=f"Hourly Demand Pattern for {selected_day}",
xaxis=dict(
title="Hour of Day",
tickmode="linear",
tick0=0,
dtick=1
),
yaxis=dict(
title="Demand (Expected Rides)",
titlefont=dict(color="#4e8cff"),
tickfont=dict(color="#4e8cff")
),
yaxis2=dict(
title="Average Value (€)",
titlefont=dict(color="#ff6b6b"),
tickfont=dict(color="#ff6b6b"),
anchor="x",
overlaying="y",
side="right"
),
hovermode="x unified",
legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="center",
x=0.5
)
)
st.plotly_chart(fig, use_container_width=True)
# Add observations
st.markdown("""
**Key Observations:**
- Peak demand typically occurs between 15:00-18:00 (3-6 PM)
- Early morning hours (4-5 AM) often show higher average ride values
- Morning rush hour (6-9 AM) shows moderate demand with variable values
""")
with tab2:
# Generate daily demand data
daily_data = []
for day in range(7):
peak_hour = 17 if day < 5 else 22 # Weekday peak at 5pm, weekend peak at 10pm
day_recs = model.predict(day, peak_hour, top_n=100)
total_demand = sum(rec["predicted_rides"] for rec in day_recs)
avg_value = sum(rec["avg_value"] * rec["predicted_rides"] for rec in day_recs) / total_demand if total_demand > 0 else 0
daily_data.append({
"day": days[day],
"demand": total_demand,
"value": avg_value
})
daily_df = pd.DataFrame(daily_data)
# Create bar chart
fig = px.bar(
daily_df,
x="day",
y="demand",
color="value",
color_continuous_scale="Viridis",
labels={
"day": "Day of Week",
"demand": "Peak Demand (Expected Rides)",
"value": "Avg Value (€)"
},
title="Peak Demand by Day of Week"
)
# Highlight selected day
fig.add_vline(
x=selected_day,
line_width=2,
line_dash="dash",
line_color="red",
annotation_text="Selected Day",
annotation_position="top right"
)
# Update layout
fig.update_layout(
xaxis=dict(categoryorder="array", categoryarray=days),
coloraxis_colorbar=dict(title="Avg Value (€)")
)
st.plotly_chart(fig, use_container_width=True)
# Add observations
st.markdown("""
**Key Observations:**
- Weekends (especially Saturday) typically show higher demand
- Tuesday and Thursday often have higher average ride values
- Weekend nights show different demand patterns than weekday nights
""")
# Footer section with additional information
st.markdown('<div class="section-header">Tips for Drivers</div>', unsafe_allow_html=True)
tips_col1, tips_col2, tips_col3 = st.columns(3)
with tips_col1:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.subheader("Best Times")
st.markdown("""
- **Weekdays**: 7-9 AM, 4-6 PM
- **Weekends**: 10 PM - 2 AM
- **High Value**: Tuesday & Thursday early morning (4-5 AM) and late night (10 PM-12 AM)
""")
st.markdown('</div>', unsafe_allow_html=True)
with tips_col2:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.subheader("Best Areas")
st.markdown("""
- **City Center**: Consistent demand throughout the day
- **University Area**: Higher value rides, especially weekdays
- **Business District**: Good during morning rush hours
""")
st.markdown('</div>', unsafe_allow_html=True)
with tips_col3:
st.markdown('<div class="card">', unsafe_allow_html=True)
st.subheader("Strategy Tips")
st.markdown("""
- Position 5-10 minutes before peak times
- Balance high-volume vs high-value areas
- For longer shifts, start with high-value rides then switch to high-volume
""")
st.markdown('</div>', unsafe_allow_html=True)
if __name__ == "__main__":
main() |