Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,694 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# streamlit_app.py - Bolt Driver Recommendation System
|
2 |
+
import streamlit as st
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
import plotly.express as px
|
8 |
+
import plotly.graph_objects as go
|
9 |
+
from datetime import datetime, timedelta
|
10 |
+
import folium
|
11 |
+
from folium.plugins import HeatMap, MarkerCluster
|
12 |
+
from streamlit_folium import folium_static
|
13 |
+
import pickle
|
14 |
+
import os
|
15 |
+
|
16 |
+
# Set page configuration
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="Bolt Driver Recommendation System",
|
19 |
+
page_icon="🚖",
|
20 |
+
layout="wide",
|
21 |
+
initial_sidebar_state="expanded"
|
22 |
+
)
|
23 |
+
|
24 |
+
# Custom CSS styling
|
25 |
+
st.markdown("""
|
26 |
+
<style>
|
27 |
+
.main-header {
|
28 |
+
font-size: 2.5rem;
|
29 |
+
color: #272D37;
|
30 |
+
text-align: center;
|
31 |
+
margin-bottom: 1rem;
|
32 |
+
font-weight: bold;
|
33 |
+
}
|
34 |
+
.sub-header {
|
35 |
+
font-size: 1.8rem;
|
36 |
+
color: #272D37;
|
37 |
+
margin-top: 1.5rem;
|
38 |
+
margin-bottom: 1rem;
|
39 |
+
}
|
40 |
+
.section-header {
|
41 |
+
font-size: 1.3rem;
|
42 |
+
color: #272D37;
|
43 |
+
margin-top: 1rem;
|
44 |
+
margin-bottom: 0.5rem;
|
45 |
+
font-weight: bold;
|
46 |
+
}
|
47 |
+
.highlight {
|
48 |
+
background-color: #F0F2F6;
|
49 |
+
padding: 1rem;
|
50 |
+
border-radius: 0.5rem;
|
51 |
+
margin-bottom: 1rem;
|
52 |
+
}
|
53 |
+
.card {
|
54 |
+
background-color: white;
|
55 |
+
border-radius: 0.5rem;
|
56 |
+
padding: 1.5rem;
|
57 |
+
box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15);
|
58 |
+
margin-bottom: 1rem;
|
59 |
+
}
|
60 |
+
.info-box {
|
61 |
+
background-color: #e8f4f8;
|
62 |
+
border-left: 5px solid #4e8cff;
|
63 |
+
padding: 0.8rem;
|
64 |
+
border-radius: 0.3rem;
|
65 |
+
margin-bottom: 1rem;
|
66 |
+
}
|
67 |
+
.metric-container {
|
68 |
+
display: flex;
|
69 |
+
justify-content: space-between;
|
70 |
+
gap: 1rem;
|
71 |
+
}
|
72 |
+
.metric-card {
|
73 |
+
background-color: white;
|
74 |
+
border-radius: 0.5rem;
|
75 |
+
padding: 1rem;
|
76 |
+
text-align: center;
|
77 |
+
box-shadow: 0 0.15rem 1.75rem 0 rgba(58, 59, 69, 0.15);
|
78 |
+
flex: 1;
|
79 |
+
}
|
80 |
+
.metric-value {
|
81 |
+
font-size: 1.8rem;
|
82 |
+
font-weight: bold;
|
83 |
+
color: #272D37;
|
84 |
+
}
|
85 |
+
.metric-label {
|
86 |
+
font-size: 0.9rem;
|
87 |
+
color: #6e707e;
|
88 |
+
}
|
89 |
+
</style>
|
90 |
+
""", unsafe_allow_html=True)
|
91 |
+
|
92 |
+
# Header and app description
|
93 |
+
st.markdown('<div class="main-header">Bolt Driver Recommendation System</div>', unsafe_allow_html=True)
|
94 |
+
|
95 |
+
with st.container():
|
96 |
+
st.markdown('<div class="info-box">This application helps Bolt drivers find optimal areas to position themselves based on predicted ride demand and value. The recommendations are personalized based on time, location, and driver preferences.</div>', unsafe_allow_html=True)
|
97 |
+
|
98 |
+
class DemandPredictionModel:
|
99 |
+
def __init__(self):
|
100 |
+
"""Initialize the demand prediction model"""
|
101 |
+
# In a real app, we would load the model from a file
|
102 |
+
# Here we'll create a dummy version for demonstration
|
103 |
+
self.setup_demo_data()
|
104 |
+
|
105 |
+
def setup_demo_data(self):
|
106 |
+
"""Set up demonstration data based on our analysis"""
|
107 |
+
# Define geographic boundaries (Tallinn)
|
108 |
+
self.min_lat, self.max_lat = 59.32, 59.57
|
109 |
+
self.min_lng, self.max_lng = 24.51, 24.97
|
110 |
+
|
111 |
+
# Create grid
|
112 |
+
grid_size = 10
|
113 |
+
self.lat_step = (self.max_lat - self.min_lat) / grid_size
|
114 |
+
self.lng_step = (self.max_lng - self.min_lng) / grid_size
|
115 |
+
|
116 |
+
# Generate lat/lng bins
|
117 |
+
self.lat_bins = np.linspace(self.min_lat, self.max_lat, grid_size + 1)
|
118 |
+
self.lng_bins = np.linspace(self.min_lng, self.max_lng, grid_size + 1)
|
119 |
+
|
120 |
+
# Create demand patterns based on our findings
|
121 |
+
self.demand_patterns = self.create_demand_patterns()
|
122 |
+
|
123 |
+
def create_demand_patterns(self):
|
124 |
+
"""Create realistic demand patterns based on our analysis"""
|
125 |
+
# Initialize 4D array: [day_of_week][hour][lat_bin][lng_bin]
|
126 |
+
days = 7
|
127 |
+
hours = 24
|
128 |
+
lat_bins = len(self.lat_bins) - 1
|
129 |
+
lng_bins = len(self.lng_bins) - 1
|
130 |
+
|
131 |
+
demand_patterns = np.zeros((days, hours, lat_bins, lng_bins))
|
132 |
+
value_patterns = np.zeros((days, hours, lat_bins, lng_bins))
|
133 |
+
|
134 |
+
# Key areas from our analysis
|
135 |
+
city_center = {"lat_idx": 4, "lng_idx": 5, "base_demand": 300, "value": 1.91}
|
136 |
+
secondary_hub = {"lat_idx": 4, "lng_idx": 4, "base_demand": 150, "value": 1.94}
|
137 |
+
university_area = {"lat_idx": 3, "lng_idx": 4, "base_demand": 80, "value": 2.89}
|
138 |
+
residential_zone = {"lat_idx": 3, "lng_idx": 3, "base_demand": 60, "value": 1.85}
|
139 |
+
business_district = {"lat_idx": 4, "lng_idx": 6, "base_demand": 50, "value": 1.56}
|
140 |
+
|
141 |
+
hotspots = [city_center, secondary_hub, university_area, residential_zone, business_district]
|
142 |
+
|
143 |
+
# Time patterns
|
144 |
+
hourly_factors = {
|
145 |
+
0: 0.5, 1: 0.4, 2: 0.3, 3: 0.3, 4: 0.3, 5: 0.5,
|
146 |
+
6: 0.8, 7: 0.9, 8: 0.7, 9: 0.6, 10: 0.6, 11: 0.6,
|
147 |
+
12: 0.7, 13: 0.8, 14: 0.9, 15: 1.0, 16: 1.0, 17: 0.8,
|
148 |
+
18: 0.7, 19: 0.7, 20: 0.7, 21: 0.8, 22: 0.9, 23: 0.7
|
149 |
+
}
|
150 |
+
|
151 |
+
# Value patterns - certain times have higher values
|
152 |
+
value_factors = {
|
153 |
+
0: 1.4, 1: 0.8, 2: 1.0, 3: 0.6, 4: 1.6, 5: 0.7,
|
154 |
+
6: 0.9, 7: 1.1, 8: 1.0, 9: 0.7, 10: 0.8, 11: 1.1,
|
155 |
+
12: 0.8, 13: 0.9, 14: 1.6, 15: 0.9, 16: 0.8, 17: 1.0,
|
156 |
+
18: 0.8, 19: 0.7, 20: 1.1, 21: 0.8, 22: 1.0, 23: 1.2
|
157 |
+
}
|
158 |
+
|
159 |
+
# Day patterns
|
160 |
+
day_factors = {
|
161 |
+
0: 0.8, # Monday
|
162 |
+
1: 0.9, # Tuesday
|
163 |
+
2: 0.9, # Wednesday
|
164 |
+
3: 0.85, # Thursday
|
165 |
+
4: 0.95, # Friday
|
166 |
+
5: 1.0, # Saturday
|
167 |
+
6: 0.8 # Sunday
|
168 |
+
}
|
169 |
+
|
170 |
+
# Fill the demand patterns
|
171 |
+
for day in range(days):
|
172 |
+
for hour in range(hours):
|
173 |
+
# Apply base patterns with temporal variations
|
174 |
+
time_factor = hourly_factors[hour] * day_factors[day]
|
175 |
+
|
176 |
+
# Add some specific day-hour combinations
|
177 |
+
# Tuesday and Thursday early morning and late night have higher values
|
178 |
+
special_value_factor = 1.0
|
179 |
+
if (day == 1 or day == 3) and (hour in [4, 22, 23]):
|
180 |
+
special_value_factor = 2.0
|
181 |
+
|
182 |
+
for spot in hotspots:
|
183 |
+
lat_idx, lng_idx = spot["lat_idx"], spot["lng_idx"]
|
184 |
+
base_demand = spot["base_demand"]
|
185 |
+
base_value = spot["value"]
|
186 |
+
|
187 |
+
# Set demand
|
188 |
+
demand = base_demand * time_factor
|
189 |
+
# Add some randomness
|
190 |
+
demand *= np.random.uniform(0.9, 1.1)
|
191 |
+
demand_patterns[day, hour, lat_idx, lng_idx] = demand
|
192 |
+
|
193 |
+
# Set value
|
194 |
+
value = base_value * value_factors[hour] * special_value_factor
|
195 |
+
# Add some randomness
|
196 |
+
value *= np.random.uniform(0.95, 1.05)
|
197 |
+
value_patterns[day, hour, lat_idx, lng_idx] = value
|
198 |
+
|
199 |
+
# Add some spillover to neighboring cells
|
200 |
+
for d_lat in [-1, 0, 1]:
|
201 |
+
for d_lng in [-1, 0, 1]:
|
202 |
+
if d_lat == 0 and d_lng == 0:
|
203 |
+
continue
|
204 |
+
|
205 |
+
n_lat = lat_idx + d_lat
|
206 |
+
n_lng = lng_idx + d_lng
|
207 |
+
|
208 |
+
if (0 <= n_lat < lat_bins and 0 <= n_lng < lng_bins):
|
209 |
+
# Spillover decreases with distance
|
210 |
+
distance = np.sqrt(d_lat**2 + d_lng**2)
|
211 |
+
spillover_factor = 0.5 / distance
|
212 |
+
|
213 |
+
demand_patterns[day, hour, n_lat, n_lng] += demand * spillover_factor
|
214 |
+
value_patterns[day, hour, n_lat, n_lng] += value * 0.9 # Slightly lower values in spillover areas
|
215 |
+
|
216 |
+
# Create combined dict
|
217 |
+
patterns = {
|
218 |
+
"demand": demand_patterns,
|
219 |
+
"value": value_patterns
|
220 |
+
}
|
221 |
+
|
222 |
+
return patterns
|
223 |
+
|
224 |
+
def predict(self, day, hour, current_lat=None, current_lng=None, value_weight=0.5, top_n=5):
|
225 |
+
"""
|
226 |
+
Predict high-demand areas for a given day and hour
|
227 |
+
|
228 |
+
Parameters:
|
229 |
+
- day: Day of week (0=Monday, 6=Sunday)
|
230 |
+
- hour: Hour of day (0-23)
|
231 |
+
- current_lat: Driver's current latitude (optional)
|
232 |
+
- current_lng: Driver's current longitude (optional)
|
233 |
+
- value_weight: Weight for balancing demand vs value (0-1)
|
234 |
+
- top_n: Number of recommendations to return
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
- List of recommended areas
|
238 |
+
"""
|
239 |
+
demand_matrix = self.demand_patterns["demand"][day, hour]
|
240 |
+
value_matrix = self.demand_patterns["value"][day, hour]
|
241 |
+
|
242 |
+
# Flatten the matrices for ranking
|
243 |
+
recommendations = []
|
244 |
+
|
245 |
+
for lat_idx in range(len(self.lat_bins) - 1):
|
246 |
+
for lng_idx in range(len(self.lng_bins) - 1):
|
247 |
+
demand = demand_matrix[lat_idx, lng_idx]
|
248 |
+
value = value_matrix[lat_idx, lng_idx]
|
249 |
+
|
250 |
+
if demand > 0:
|
251 |
+
center_lat = (self.lat_bins[lat_idx] + self.lat_bins[lat_idx + 1]) / 2
|
252 |
+
center_lng = (self.lng_bins[lng_idx] + self.lng_bins[lng_idx + 1]) / 2
|
253 |
+
|
254 |
+
# Calculate distance if driver location provided
|
255 |
+
distance_km = None
|
256 |
+
if current_lat is not None and current_lng is not None:
|
257 |
+
# Calculate Haversine distance
|
258 |
+
R = 6371 # Earth radius in kilometers
|
259 |
+
dLat = np.radians(current_lat - center_lat)
|
260 |
+
dLon = np.radians(current_lng - center_lng)
|
261 |
+
a = (np.sin(dLat/2) * np.sin(dLat/2) +
|
262 |
+
np.cos(np.radians(current_lat)) * np.cos(np.radians(center_lat)) *
|
263 |
+
np.sin(dLon/2) * np.sin(dLon/2))
|
264 |
+
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1-a))
|
265 |
+
distance_km = R * c
|
266 |
+
|
267 |
+
# Scale demand and value for scoring
|
268 |
+
max_demand = np.max(demand_matrix)
|
269 |
+
max_value = np.max(value_matrix)
|
270 |
+
|
271 |
+
demand_score = demand / max_demand if max_demand > 0 else 0
|
272 |
+
value_score = value / max_value if max_value > 0 else 0
|
273 |
+
|
274 |
+
# Combined score based on value weight
|
275 |
+
score = (1 - value_weight) * demand_score + value_weight * value_score
|
276 |
+
|
277 |
+
# Adjust for distance if available
|
278 |
+
if distance_km is not None:
|
279 |
+
# Distance penalty (decreases as distance increases)
|
280 |
+
# Effective range ~10km
|
281 |
+
distance_penalty = 1.0 / (1.0 + distance_km / 5.0)
|
282 |
+
adjusted_score = score * distance_penalty
|
283 |
+
else:
|
284 |
+
adjusted_score = score
|
285 |
+
|
286 |
+
recommendations.append({
|
287 |
+
"center_lat": center_lat,
|
288 |
+
"center_lng": center_lng,
|
289 |
+
"predicted_rides": demand,
|
290 |
+
"avg_value": value,
|
291 |
+
"expected_value": demand * value,
|
292 |
+
"score": score,
|
293 |
+
"adjusted_score": adjusted_score,
|
294 |
+
"distance_km": distance_km
|
295 |
+
})
|
296 |
+
|
297 |
+
# Sort by adjusted score
|
298 |
+
sorted_recommendations = sorted(recommendations, key=lambda x: x["adjusted_score"], reverse=True)
|
299 |
+
|
300 |
+
return sorted_recommendations[:top_n]
|
301 |
+
|
302 |
+
# Main application flow
|
303 |
+
def main():
|
304 |
+
# Initialize model
|
305 |
+
model = DemandPredictionModel()
|
306 |
+
|
307 |
+
# Sidebar for inputs
|
308 |
+
with st.sidebar:
|
309 |
+
st.markdown('<div class="section-header">Driver Options</div>', unsafe_allow_html=True)
|
310 |
+
|
311 |
+
# Time selection
|
312 |
+
st.subheader("Time Selection")
|
313 |
+
|
314 |
+
today = datetime.now()
|
315 |
+
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]
|
316 |
+
selected_day = st.selectbox("Day of Week", days, index=today.weekday())
|
317 |
+
day_idx = days.index(selected_day)
|
318 |
+
|
319 |
+
selected_hour = st.slider("Hour of Day", 0, 23, today.hour, format="%d:00")
|
320 |
+
|
321 |
+
# Location input
|
322 |
+
st.subheader("Driver Location")
|
323 |
+
use_location = st.checkbox("Use Current Location", value=True)
|
324 |
+
|
325 |
+
# Default to Tallinn center
|
326 |
+
default_lat, default_lng = 59.436, 24.753
|
327 |
+
|
328 |
+
if use_location:
|
329 |
+
col1, col2 = st.columns(2)
|
330 |
+
with col1:
|
331 |
+
current_lat = st.number_input("Latitude", value=default_lat, format="%.5f", step=0.001)
|
332 |
+
with col2:
|
333 |
+
current_lng = st.number_input("Longitude", value=default_lng, format="%.5f", step=0.001)
|
334 |
+
else:
|
335 |
+
current_lat, current_lng = None, None
|
336 |
+
|
337 |
+
# Preference settings
|
338 |
+
st.subheader("Preferences")
|
339 |
+
|
340 |
+
num_recommendations = st.slider("Number of Recommendations", 3, 10, 5)
|
341 |
+
|
342 |
+
value_weight = st.slider(
|
343 |
+
"Optimization Balance",
|
344 |
+
min_value=0.0,
|
345 |
+
max_value=1.0,
|
346 |
+
value=0.5,
|
347 |
+
step=0.1,
|
348 |
+
help="0 = Focus on ride count, 1 = Focus on ride value"
|
349 |
+
)
|
350 |
+
|
351 |
+
# Advanced options for visual
|
352 |
+
st.subheader("Display Options")
|
353 |
+
show_heatmap = st.checkbox("Show Demand Heatmap", value=True)
|
354 |
+
|
355 |
+
# Generate recommendations
|
356 |
+
recommendations = model.predict(
|
357 |
+
day=day_idx,
|
358 |
+
hour=selected_hour,
|
359 |
+
current_lat=current_lat if use_location else None,
|
360 |
+
current_lng=current_lng if use_location else None,
|
361 |
+
value_weight=value_weight,
|
362 |
+
top_n=num_recommendations
|
363 |
+
)
|
364 |
+
|
365 |
+
# Main content area
|
366 |
+
col1, col2 = st.columns([3, 2])
|
367 |
+
|
368 |
+
with col1:
|
369 |
+
st.markdown('<div class="section-header">Demand Map</div>', unsafe_allow_html=True)
|
370 |
+
|
371 |
+
# Create map
|
372 |
+
m = folium.Map(
|
373 |
+
location=[59.436, 24.753], # Tallinn center
|
374 |
+
zoom_start=12,
|
375 |
+
tiles="CartoDB positron"
|
376 |
+
)
|
377 |
+
|
378 |
+
# Add driver marker if location provided
|
379 |
+
if use_location:
|
380 |
+
folium.Marker(
|
381 |
+
location=[current_lat, current_lng],
|
382 |
+
popup="Your Location",
|
383 |
+
icon=folium.Icon(color="blue", icon="user", prefix="fa"),
|
384 |
+
tooltip="Your Current Location"
|
385 |
+
).add_to(m)
|
386 |
+
|
387 |
+
# Add recommendation markers
|
388 |
+
for i, rec in enumerate(recommendations):
|
389 |
+
folium.CircleMarker(
|
390 |
+
location=[rec["center_lat"], rec["center_lng"]],
|
391 |
+
radius=20,
|
392 |
+
color="red",
|
393 |
+
fill=True,
|
394 |
+
fill_color="red",
|
395 |
+
fill_opacity=0.6,
|
396 |
+
popup=f"""
|
397 |
+
<b>Recommendation {i+1}</b><br>
|
398 |
+
Expected rides: {rec['predicted_rides']:.1f}<br>
|
399 |
+
Avg value: €{rec['avg_value']:.2f}<br>
|
400 |
+
Expected value: €{rec['expected_value']:.2f}<br>
|
401 |
+
{f'Distance: {rec["distance_km"]:.2f} km' if rec["distance_km"] is not None else ''}
|
402 |
+
"""
|
403 |
+
).add_to(m)
|
404 |
+
|
405 |
+
# Add number label
|
406 |
+
folium.Marker(
|
407 |
+
location=[rec["center_lat"], rec["center_lng"]],
|
408 |
+
icon=folium.DivIcon(
|
409 |
+
html=f"""
|
410 |
+
<div style="
|
411 |
+
font-size: 12pt;
|
412 |
+
color: white;
|
413 |
+
font-weight: bold;
|
414 |
+
text-align: center;
|
415 |
+
width: 25px;
|
416 |
+
height: 25px;
|
417 |
+
line-height: 25px;
|
418 |
+
">{i+1}</div>
|
419 |
+
"""
|
420 |
+
)
|
421 |
+
).add_to(m)
|
422 |
+
|
423 |
+
# Add heatmap if enabled
|
424 |
+
if show_heatmap:
|
425 |
+
# Get a larger set of predictions for the heatmap
|
426 |
+
all_predictions = model.predict(day_idx, selected_hour, top_n=100)
|
427 |
+
heat_data = [
|
428 |
+
[pred["center_lat"], pred["center_lng"], pred["predicted_rides"]]
|
429 |
+
for pred in all_predictions
|
430 |
+
]
|
431 |
+
|
432 |
+
# Add heatmap layer
|
433 |
+
HeatMap(
|
434 |
+
heat_data,
|
435 |
+
radius=15,
|
436 |
+
gradient={
|
437 |
+
0.2: 'blue',
|
438 |
+
0.4: 'lime',
|
439 |
+
0.6: 'yellow',
|
440 |
+
0.8: 'orange',
|
441 |
+
1.0: 'red'
|
442 |
+
},
|
443 |
+
name="Demand Heatmap",
|
444 |
+
show=True
|
445 |
+
).add_to(m)
|
446 |
+
|
447 |
+
# Add layer control
|
448 |
+
folium.LayerControl().add_to(m)
|
449 |
+
|
450 |
+
# Display the map
|
451 |
+
folium_static(m, width=700)
|
452 |
+
|
453 |
+
with col2:
|
454 |
+
st.markdown('<div class="section-header">Recommendations</div>', unsafe_allow_html=True)
|
455 |
+
|
456 |
+
# Create metrics for top recommendation
|
457 |
+
if recommendations:
|
458 |
+
top_rec = recommendations[0]
|
459 |
+
|
460 |
+
st.markdown('<div class="highlight">', unsafe_allow_html=True)
|
461 |
+
st.subheader("Top Recommendation")
|
462 |
+
|
463 |
+
col1, col2 = st.columns(2)
|
464 |
+
with col1:
|
465 |
+
st.metric("Expected Rides", f"{top_rec['predicted_rides']:.1f}")
|
466 |
+
st.metric("Avg Value", f"€{top_rec['avg_value']:.2f}")
|
467 |
+
with col2:
|
468 |
+
st.metric("Expected Value", f"€{top_rec['expected_value']:.2f}")
|
469 |
+
if top_rec["distance_km"] is not None:
|
470 |
+
st.metric("Distance", f"{top_rec['distance_km']:.2f} km")
|
471 |
+
|
472 |
+
st.markdown(f"Location: [{top_rec['center_lat']:.4f}, {top_rec['center_lng']:.4f}]")
|
473 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
474 |
+
|
475 |
+
# Create formatted table of all recommendations
|
476 |
+
st.subheader("All Recommendations")
|
477 |
+
|
478 |
+
rec_df = pd.DataFrame(recommendations)
|
479 |
+
|
480 |
+
# Format for display
|
481 |
+
display_df = pd.DataFrame({
|
482 |
+
"Rank": range(1, len(rec_df) + 1),
|
483 |
+
"Expected Rides": rec_df["predicted_rides"].round(1),
|
484 |
+
"Avg Value (€)": rec_df["avg_value"].round(2),
|
485 |
+
"Expected Value (€)": rec_df["expected_value"].round(2)
|
486 |
+
})
|
487 |
+
|
488 |
+
# Add distance if available
|
489 |
+
if "distance_km" in rec_df.columns and rec_df["distance_km"].notna().any():
|
490 |
+
display_df["Distance (km)"] = rec_df["distance_km"].round(2)
|
491 |
+
|
492 |
+
st.table(display_df)
|
493 |
+
|
494 |
+
# Add explanation for score calculation
|
495 |
+
st.markdown('<div class="info-box">', unsafe_allow_html=True)
|
496 |
+
st.markdown("**How recommendations are calculated:**")
|
497 |
+
st.markdown("""
|
498 |
+
- Ride count predictions based on historical patterns
|
499 |
+
- Value based on average ride fares
|
500 |
+
- Recommendations balanced by your preferences
|
501 |
+
- Distance factored in when location is provided
|
502 |
+
""")
|
503 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
504 |
+
|
505 |
+
# Time series visualization
|
506 |
+
st.markdown('<div class="section-header">Demand Patterns Analysis</div>', unsafe_allow_html=True)
|
507 |
+
|
508 |
+
tab1, tab2 = st.tabs(["Hourly Patterns", "Daily Patterns"])
|
509 |
+
|
510 |
+
with tab1:
|
511 |
+
# Generate hourly demand data for the selected day
|
512 |
+
hourly_data = []
|
513 |
+
for hour in range(24):
|
514 |
+
hour_recs = model.predict(day_idx, hour, top_n=100)
|
515 |
+
total_demand = sum(rec["predicted_rides"] for rec in hour_recs)
|
516 |
+
avg_value = sum(rec["avg_value"] * rec["predicted_rides"] for rec in hour_recs) / total_demand if total_demand > 0 else 0
|
517 |
+
|
518 |
+
hourly_data.append({
|
519 |
+
"hour": hour,
|
520 |
+
"demand": total_demand,
|
521 |
+
"value": avg_value
|
522 |
+
})
|
523 |
+
|
524 |
+
hourly_df = pd.DataFrame(hourly_data)
|
525 |
+
|
526 |
+
# Create dual-axis chart
|
527 |
+
fig = go.Figure()
|
528 |
+
|
529 |
+
# Add demand line
|
530 |
+
fig.add_trace(go.Scatter(
|
531 |
+
x=hourly_df["hour"],
|
532 |
+
y=hourly_df["demand"],
|
533 |
+
name="Demand",
|
534 |
+
line=dict(color="#4e8cff", width=3),
|
535 |
+
hovertemplate="Hour: %{x}<br>Demand: %{y:.1f}<extra></extra>"
|
536 |
+
))
|
537 |
+
|
538 |
+
# Add value line on secondary axis
|
539 |
+
fig.add_trace(go.Scatter(
|
540 |
+
x=hourly_df["hour"],
|
541 |
+
y=hourly_df["value"],
|
542 |
+
name="Avg Value (€)",
|
543 |
+
line=dict(color="#ff6b6b", width=3, dash="dot"),
|
544 |
+
yaxis="y2",
|
545 |
+
hovertemplate="Hour: %{x}<br>Avg Value: €%{y:.2f}<extra></extra>"
|
546 |
+
))
|
547 |
+
|
548 |
+
# Highlight selected hour
|
549 |
+
fig.add_vline(
|
550 |
+
x=selected_hour,
|
551 |
+
line_width=2,
|
552 |
+
line_dash="dash",
|
553 |
+
line_color="green",
|
554 |
+
annotation_text="Selected Hour",
|
555 |
+
annotation_position="top right"
|
556 |
+
)
|
557 |
+
|
558 |
+
# Update layout
|
559 |
+
fig.update_layout(
|
560 |
+
title=f"Hourly Demand Pattern for {selected_day}",
|
561 |
+
xaxis=dict(
|
562 |
+
title="Hour of Day",
|
563 |
+
tickmode="linear",
|
564 |
+
tick0=0,
|
565 |
+
dtick=1
|
566 |
+
),
|
567 |
+
yaxis=dict(
|
568 |
+
title="Demand (Expected Rides)",
|
569 |
+
titlefont=dict(color="#4e8cff"),
|
570 |
+
tickfont=dict(color="#4e8cff")
|
571 |
+
),
|
572 |
+
yaxis2=dict(
|
573 |
+
title="Average Value (€)",
|
574 |
+
titlefont=dict(color="#ff6b6b"),
|
575 |
+
tickfont=dict(color="#ff6b6b"),
|
576 |
+
anchor="x",
|
577 |
+
overlaying="y",
|
578 |
+
side="right"
|
579 |
+
),
|
580 |
+
hovermode="x unified",
|
581 |
+
legend=dict(
|
582 |
+
orientation="h",
|
583 |
+
yanchor="bottom",
|
584 |
+
y=1.02,
|
585 |
+
xanchor="center",
|
586 |
+
x=0.5
|
587 |
+
)
|
588 |
+
)
|
589 |
+
|
590 |
+
st.plotly_chart(fig, use_container_width=True)
|
591 |
+
|
592 |
+
# Add observations
|
593 |
+
st.markdown("""
|
594 |
+
**Key Observations:**
|
595 |
+
- Peak demand typically occurs between 15:00-18:00 (3-6 PM)
|
596 |
+
- Early morning hours (4-5 AM) often show higher average ride values
|
597 |
+
- Morning rush hour (6-9 AM) shows moderate demand with variable values
|
598 |
+
""")
|
599 |
+
|
600 |
+
with tab2:
|
601 |
+
# Generate daily demand data
|
602 |
+
daily_data = []
|
603 |
+
for day in range(7):
|
604 |
+
peak_hour = 17 if day < 5 else 22 # Weekday peak at 5pm, weekend peak at 10pm
|
605 |
+
day_recs = model.predict(day, peak_hour, top_n=100)
|
606 |
+
total_demand = sum(rec["predicted_rides"] for rec in day_recs)
|
607 |
+
avg_value = sum(rec["avg_value"] * rec["predicted_rides"] for rec in day_recs) / total_demand if total_demand > 0 else 0
|
608 |
+
|
609 |
+
daily_data.append({
|
610 |
+
"day": days[day],
|
611 |
+
"demand": total_demand,
|
612 |
+
"value": avg_value
|
613 |
+
})
|
614 |
+
|
615 |
+
daily_df = pd.DataFrame(daily_data)
|
616 |
+
|
617 |
+
# Create bar chart
|
618 |
+
fig = px.bar(
|
619 |
+
daily_df,
|
620 |
+
x="day",
|
621 |
+
y="demand",
|
622 |
+
color="value",
|
623 |
+
color_continuous_scale="Viridis",
|
624 |
+
labels={
|
625 |
+
"day": "Day of Week",
|
626 |
+
"demand": "Peak Demand (Expected Rides)",
|
627 |
+
"value": "Avg Value (€)"
|
628 |
+
},
|
629 |
+
title="Peak Demand by Day of Week"
|
630 |
+
)
|
631 |
+
|
632 |
+
# Highlight selected day
|
633 |
+
fig.add_vline(
|
634 |
+
x=selected_day,
|
635 |
+
line_width=2,
|
636 |
+
line_dash="dash",
|
637 |
+
line_color="red",
|
638 |
+
annotation_text="Selected Day",
|
639 |
+
annotation_position="top right"
|
640 |
+
)
|
641 |
+
|
642 |
+
# Update layout
|
643 |
+
fig.update_layout(
|
644 |
+
xaxis=dict(categoryorder="array", categoryarray=days),
|
645 |
+
coloraxis_colorbar=dict(title="Avg Value (€)")
|
646 |
+
)
|
647 |
+
|
648 |
+
st.plotly_chart(fig, use_container_width=True)
|
649 |
+
|
650 |
+
# Add observations
|
651 |
+
st.markdown("""
|
652 |
+
**Key Observations:**
|
653 |
+
- Weekends (especially Saturday) typically show higher demand
|
654 |
+
- Tuesday and Thursday often have higher average ride values
|
655 |
+
- Weekend nights show different demand patterns than weekday nights
|
656 |
+
""")
|
657 |
+
|
658 |
+
# Footer section with additional information
|
659 |
+
st.markdown('<div class="section-header">Tips for Drivers</div>', unsafe_allow_html=True)
|
660 |
+
|
661 |
+
tips_col1, tips_col2, tips_col3 = st.columns(3)
|
662 |
+
|
663 |
+
with tips_col1:
|
664 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
665 |
+
st.subheader("Best Times")
|
666 |
+
st.markdown("""
|
667 |
+
- **Weekdays**: 7-9 AM, 4-6 PM
|
668 |
+
- **Weekends**: 10 PM - 2 AM
|
669 |
+
- **High Value**: Tuesday & Thursday early morning (4-5 AM) and late night (10 PM-12 AM)
|
670 |
+
""")
|
671 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
672 |
+
|
673 |
+
with tips_col2:
|
674 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
675 |
+
st.subheader("Best Areas")
|
676 |
+
st.markdown("""
|
677 |
+
- **City Center**: Consistent demand throughout the day
|
678 |
+
- **University Area**: Higher value rides, especially weekdays
|
679 |
+
- **Business District**: Good during morning rush hours
|
680 |
+
""")
|
681 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
682 |
+
|
683 |
+
with tips_col3:
|
684 |
+
st.markdown('<div class="card">', unsafe_allow_html=True)
|
685 |
+
st.subheader("Strategy Tips")
|
686 |
+
st.markdown("""
|
687 |
+
- Position 5-10 minutes before peak times
|
688 |
+
- Balance high-volume vs high-value areas
|
689 |
+
- For longer shifts, start with high-value rides then switch to high-volume
|
690 |
+
""")
|
691 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
692 |
+
|
693 |
+
if __name__ == "__main__":
|
694 |
+
main()
|