Spaces:
Sleeping
Sleeping
import streamlit as st | |
import folium | |
from streamlit_folium import folium_static | |
import pandas as pd | |
# Sample data extracted from the notebook's Leaflet map | |
data = { | |
"grid_id": ["11897_2485", "11902_2482", "11904_2481", "11901_2483", "11902_2483"], | |
"lat_min": [59.504766, 59.509923, 59.519881, 59.505209, 59.510654], | |
"lon_min": [24.810962, 24.820996, 24.809146, 24.826864, 24.827830], | |
"lat_max": [59.509766, 59.514923, 59.524881, 59.510209, 59.515654], | |
"lon_max": [24.820962, 24.830996, 24.819146, 24.836864, 24.837830], | |
"time": ["early_morning", "evening_rush", "evening_rush", "morning_rush", "early_morning"], | |
"value": [2.46, 2.45, 2.44, 2.44, 2.44], | |
"rides": [15, 21, 16, 16, 36], | |
"color": ["blue", "red", "red", "green", "blue"] | |
} | |
# Convert to DataFrame | |
df = pd.DataFrame(data) | |
# Simple prediction function (simulating the model) | |
def get_predictions(time_period): | |
# Filter data by selected time period | |
filtered_df = df[df["time"] == time_period] | |
return filtered_df | |
# Streamlit app | |
st.title("Ride Value Prediction App") | |
st.write("Select a time period to see predicted ride values on the map.") | |
# Time period selector | |
time_options = ["early_morning", "morning_rush", "evening_rush"] | |
selected_time = st.selectbox("Choose Time Period", time_options) | |
# Get predictions | |
predictions = get_predictions(selected_time) | |
# Create Folium map centered on Tallinn | |
m = folium.Map(location=[59.4370, 24.7535], zoom_start=12) | |
# Add rectangles to the map | |
for _, row in predictions.iterrows(): | |
folium.Rectangle( | |
bounds=[[row["lat_min"], row["lon_min"]], [row["lat_max"], row["lon_max"]]], | |
color=row["color"], | |
fill=True, | |
fill_opacity=0.4, | |
popup=f"Grid: {row['grid_id']}<br>Time: {row['time']}<br>Value: €{row['value']}<br>Rides: {row['rides']}" | |
).add_to(m) | |
# Display the map | |
folium_static(m) | |
# Show raw predictions below the map | |
st.write("Predicted Ride Values:") | |
st.dataframe(predictions[["grid_id", "time", "value", "rides"]]) |