Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import folium
|
3 |
+
from streamlit_folium import folium_static
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
# Sample data extracted from the notebook's Leaflet map
|
7 |
+
data = {
|
8 |
+
"grid_id": ["11897_2485", "11902_2482", "11904_2481", "11901_2483", "11902_2483"],
|
9 |
+
"lat_min": [59.504766, 59.509923, 59.519881, 59.505209, 59.510654],
|
10 |
+
"lon_min": [24.810962, 24.820996, 24.809146, 24.826864, 24.827830],
|
11 |
+
"lat_max": [59.509766, 59.514923, 59.524881, 59.510209, 59.515654],
|
12 |
+
"lon_max": [24.820962, 24.830996, 24.819146, 24.836864, 24.837830],
|
13 |
+
"time": ["early_morning", "evening_rush", "evening_rush", "morning_rush", "early_morning"],
|
14 |
+
"value": [2.46, 2.45, 2.44, 2.44, 2.44],
|
15 |
+
"rides": [15, 21, 16, 16, 36],
|
16 |
+
"color": ["blue", "red", "red", "green", "blue"]
|
17 |
+
}
|
18 |
+
|
19 |
+
# Convert to DataFrame
|
20 |
+
df = pd.DataFrame(data)
|
21 |
+
|
22 |
+
# Simple prediction function (simulating the model)
|
23 |
+
def get_predictions(time_period):
|
24 |
+
# Filter data by selected time period
|
25 |
+
filtered_df = df[df["time"] == time_period]
|
26 |
+
return filtered_df
|
27 |
+
|
28 |
+
# Streamlit app
|
29 |
+
st.title("Ride Value Prediction App")
|
30 |
+
st.write("Select a time period to see predicted ride values on the map.")
|
31 |
+
|
32 |
+
# Time period selector
|
33 |
+
time_options = ["early_morning", "morning_rush", "evening_rush"]
|
34 |
+
selected_time = st.selectbox("Choose Time Period", time_options)
|
35 |
+
|
36 |
+
# Get predictions
|
37 |
+
predictions = get_predictions(selected_time)
|
38 |
+
|
39 |
+
# Create Folium map centered on Tallinn
|
40 |
+
m = folium.Map(location=[59.4370, 24.7535], zoom_start=12)
|
41 |
+
|
42 |
+
# Add rectangles to the map
|
43 |
+
for _, row in predictions.iterrows():
|
44 |
+
folium.Rectangle(
|
45 |
+
bounds=[[row["lat_min"], row["lon_min"]], [row["lat_max"], row["lon_max"]]],
|
46 |
+
color=row["color"],
|
47 |
+
fill=True,
|
48 |
+
fill_opacity=0.4,
|
49 |
+
popup=f"Grid: {row['grid_id']}<br>Time: {row['time']}<br>Value: €{row['value']}<br>Rides: {row['rides']}"
|
50 |
+
).add_to(m)
|
51 |
+
|
52 |
+
# Display the map
|
53 |
+
folium_static(m)
|
54 |
+
|
55 |
+
# Show raw predictions below the map
|
56 |
+
st.write("Predicted Ride Values:")
|
57 |
+
st.dataframe(predictions[["grid_id", "time", "value", "rides"]])
|