Langgraph_RAGAS / rag_graph.py
T-K-O-H
Initial commit
699a68e
raw
history blame
12.2 kB
from typing import Dict, List, TypedDict, Annotated
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langgraph.graph import Graph, StateGraph, END
from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness
from ragas import evaluate
from datasets import Dataset
import os
from dotenv import load_dotenv
import numpy as np
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
load_dotenv()
# Define the state
class AgentState(TypedDict):
messages: Annotated[List[HumanMessage | AIMessage], "The messages in the conversation"]
context: Annotated[str, "The retrieved context"]
response: Annotated[str, "The generated response"]
next: str
# Initialize components
llm = ChatOpenAI(model="gpt-3.5-turbo")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
# Initialize Chroma with minimal configuration
vectorstore = Chroma(
persist_directory="./chroma_db",
embedding_function=embeddings,
collection_name="rag_collection",
collection_metadata={"hnsw:space": "cosine"}
)
# Define the retrieval function
def retrieve(state: AgentState) -> Dict:
try:
messages = state["messages"]
last_message = messages[-1]
logger.info(f"Retrieving context for query: {last_message.content}")
# Get relevant documents
docs = vectorstore.similarity_search_with_score(
last_message.content,
k=10 # Increased number of documents
)
if not docs:
logger.warning("No relevant documents found in the knowledge base")
raise ValueError("No relevant documents found in the knowledge base")
# Filter and combine documents - using a lower threshold
filtered_docs = []
for doc, score in docs:
if score > 0.2: # Lower threshold for more context
filtered_docs.append(doc)
if not filtered_docs:
logger.warning("No documents met the similarity threshold, using all retrieved documents")
filtered_docs = [doc for doc, _ in docs] # Use all documents if none meet threshold
# Sort documents by relevance (using the original scores)
sorted_docs = sorted(zip(filtered_docs, [score for _, score in docs if score > 0.2]),
key=lambda x: x[1], reverse=True)
context = "\n\n".join([doc.page_content for doc, _ in sorted_docs])
logger.info(f"Using {len(filtered_docs)} documents for context")
# Validate context
if not context.strip():
logger.warning("No valid context could be retrieved")
raise ValueError("No valid context could be retrieved")
logger.info(f"Retrieved context length: {len(context)} characters")
return {"context": context, "next": "generate"}
except Exception as e:
logger.error(f"Error in retrieval: {str(e)}")
return {"context": "", "next": "generate"}
# Define the generation function
def generate(state: AgentState) -> Dict:
try:
messages = state["messages"]
context = state["context"]
if not context.strip():
logger.warning("Empty context in generation step")
return {
"response": "I apologize, but I couldn't find any relevant information in the knowledge base to answer your question. Please try rephrasing your question or upload more relevant documents.",
"metrics": {}, # Add empty metrics
"next": "evaluate"
}
logger.info("Generating response with context")
# Create prompt with context
prompt = ChatPromptTemplate.from_messages([
("system", """You are a helpful assistant specialized in quantum computing.
Use the following context to answer the question.
Guidelines:
1. Base your answer strictly on the provided context
2. If the context doesn't contain relevant information, say so clearly
3. Be specific and technical in your explanations
4. Use bullet points or numbered lists when appropriate
5. Include relevant examples from the context
6. If discussing technical concepts, explain them clearly
Context:
{context}"""),
("human", "{question}")
])
chain = prompt | llm | StrOutputParser()
response = chain.invoke({
"context": context,
"question": messages[-1].content
})
logger.info(f"Generated response length: {len(response)} characters")
# Calculate metrics directly in generate
try:
dataset = Dataset.from_dict({
"question": [messages[-1].content],
"contexts": [[context]],
"answer": [response],
"ground_truth": [context]
})
metrics_dict = {}
result = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness])
metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
logger.info(f"Metrics calculated: {metrics_dict}")
except Exception as e:
logger.error(f"Error calculating metrics: {str(e)}")
metrics_dict = {}
return {
"response": response,
"metrics": metrics_dict, # Include metrics in the response
"next": "evaluate"
}
except Exception as e:
logger.error(f"Error in generation: {str(e)}")
return {
"response": "I apologize, but I encountered an error while generating a response. Please try again.",
"metrics": {}, # Add empty metrics
"next": "evaluate"
}
# Define the RAGAS evaluation function
def evaluate_rag(state: AgentState) -> Dict:
try:
messages = state["messages"]
context = state["context"]
response = state["response"]
# Detailed logging of input data
logger.info("=== RAGAS Evaluation Debug Info ===")
logger.info(f"Question: {messages[-1].content}")
logger.info(f"Context length: {len(context)}")
logger.info(f"Response length: {len(response)}")
logger.info(f"Context preview: {context[:200]}...")
logger.info(f"Response preview: {response[:200]}...")
# Validate inputs
if not context.strip():
logger.error("Empty context detected")
return {"context": context, "response": response, "metrics": {}, "next": END}
if not response.strip():
logger.error("Empty response detected")
return {"context": context, "response": response, "metrics": {}, "next": END}
# Check for minimum content requirements
if len(context) < 50:
logger.error(f"Context too short: {len(context)} characters")
return {"context": context, "response": response, "metrics": {}, "next": END}
if len(response) < 20:
logger.error(f"Response too short: {len(response)} characters")
return {"context": context, "response": response, "metrics": {}, "next": END}
logger.info("Creating evaluation dataset...")
try:
# Create dataset for evaluation
dataset = Dataset.from_dict({
"question": [messages[-1].content],
"contexts": [[context]],
"answer": [response],
"ground_truth": [context] # Use context as ground truth for better evaluation
})
logger.info("Dataset created successfully")
# Initialize metrics dictionary
metrics_dict = {}
# Evaluate each metric separately
try:
result = evaluate(dataset, metrics=[faithfulness])
metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
logger.info(f"Faithfulness calculated: {metrics_dict['faithfulness']}")
except Exception as e:
logger.error(f"Error calculating faithfulness: {str(e)}")
metrics_dict["faithfulness"] = 0.0
try:
result = evaluate(dataset, metrics=[answer_relevancy])
metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
logger.info(f"Answer relevancy calculated: {metrics_dict['answer_relevancy']}")
except Exception as e:
logger.error(f"Error calculating answer_relevancy: {str(e)}")
metrics_dict["answer_relevancy"] = 0.0
try:
result = evaluate(dataset, metrics=[context_precision])
metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
logger.info(f"Context precision calculated: {metrics_dict['context_precision']}")
except Exception as e:
logger.error(f"Error calculating context_precision: {str(e)}")
metrics_dict["context_precision"] = 0.0
try:
result = evaluate(dataset, metrics=[context_recall])
metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
logger.info(f"Context recall calculated: {metrics_dict['context_recall']}")
except Exception as e:
logger.error(f"Error calculating context_recall: {str(e)}")
metrics_dict["context_recall"] = 0.0
try:
result = evaluate(dataset, metrics=[answer_correctness])
metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
logger.info(f"Answer correctness calculated: {metrics_dict['answer_correctness']}")
except Exception as e:
logger.error(f"Error calculating answer_correctness: {str(e)}")
metrics_dict["answer_correctness"] = 0.0
logger.info(f"RAGAS metrics calculated: {metrics_dict}")
return {"context": context, "response": response, "metrics": metrics_dict, "next": END}
except Exception as eval_error:
logger.error(f"Error during RAGAS evaluation: {str(eval_error)}")
logger.error(f"Error type: {type(eval_error)}")
return {"context": context, "response": response, "metrics": {}, "next": END}
except Exception as e:
logger.error(f"Error in RAGAS evaluation: {str(e)}")
logger.error(f"Error type: {type(e)}")
return {"context": context, "response": response, "metrics": {}, "next": END}
# Create the workflow
def create_rag_graph():
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("retrieve", retrieve)
workflow.add_node("generate", generate)
workflow.add_node("evaluate", evaluate_rag)
# Add edges
workflow.add_edge("retrieve", "generate")
workflow.add_edge("generate", "evaluate")
workflow.add_edge("evaluate", END)
# Set entry point
workflow.set_entry_point("retrieve")
# Compile
app = workflow.compile()
return app
# Create the graph
rag_graph = create_rag_graph()