File size: 12,183 Bytes
699a68e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from typing import Dict, List, TypedDict, Annotated
from langchain_core.messages import HumanMessage, AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain_core.output_parsers import StrOutputParser
from langgraph.graph import Graph, StateGraph, END
from ragas.metrics import faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness
from ragas import evaluate
from datasets import Dataset
import os
from dotenv import load_dotenv
import numpy as np
import logging

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

load_dotenv()

# Define the state
class AgentState(TypedDict):
    messages: Annotated[List[HumanMessage | AIMessage], "The messages in the conversation"]
    context: Annotated[str, "The retrieved context"]
    response: Annotated[str, "The generated response"]
    next: str

# Initialize components
llm = ChatOpenAI(model="gpt-3.5-turbo")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")

# Initialize Chroma with minimal configuration
vectorstore = Chroma(
    persist_directory="./chroma_db",
    embedding_function=embeddings,
    collection_name="rag_collection",
    collection_metadata={"hnsw:space": "cosine"}
)

# Define the retrieval function
def retrieve(state: AgentState) -> Dict:
    try:
        messages = state["messages"]
        last_message = messages[-1]
        logger.info(f"Retrieving context for query: {last_message.content}")
        
        # Get relevant documents
        docs = vectorstore.similarity_search_with_score(
            last_message.content,
            k=10  # Increased number of documents
        )
        if not docs:
            logger.warning("No relevant documents found in the knowledge base")
            raise ValueError("No relevant documents found in the knowledge base")

        # Filter and combine documents - using a lower threshold
        filtered_docs = []
        for doc, score in docs:
            if score > 0.2:  # Lower threshold for more context
                filtered_docs.append(doc)

        if not filtered_docs:
            logger.warning("No documents met the similarity threshold, using all retrieved documents")
            filtered_docs = [doc for doc, _ in docs]  # Use all documents if none meet threshold

        # Sort documents by relevance (using the original scores)
        sorted_docs = sorted(zip(filtered_docs, [score for _, score in docs if score > 0.2]), 
                            key=lambda x: x[1], reverse=True)
        context = "\n\n".join([doc.page_content for doc, _ in sorted_docs])
        logger.info(f"Using {len(filtered_docs)} documents for context")
        
        # Validate context
        if not context.strip():
            logger.warning("No valid context could be retrieved")
            raise ValueError("No valid context could be retrieved")
            
        logger.info(f"Retrieved context length: {len(context)} characters")
        return {"context": context, "next": "generate"}
    except Exception as e:
        logger.error(f"Error in retrieval: {str(e)}")
        return {"context": "", "next": "generate"}

# Define the generation function
def generate(state: AgentState) -> Dict:
    try:
        messages = state["messages"]
        context = state["context"]
        
        if not context.strip():
            logger.warning("Empty context in generation step")
            return {
                "response": "I apologize, but I couldn't find any relevant information in the knowledge base to answer your question. Please try rephrasing your question or upload more relevant documents.",
                "metrics": {},  # Add empty metrics
                "next": "evaluate"
            }
        
        logger.info("Generating response with context")
        # Create prompt with context
        prompt = ChatPromptTemplate.from_messages([
            ("system", """You are a helpful assistant specialized in quantum computing. 
            Use the following context to answer the question. 
            Guidelines:
            1. Base your answer strictly on the provided context
            2. If the context doesn't contain relevant information, say so clearly
            3. Be specific and technical in your explanations
            4. Use bullet points or numbered lists when appropriate
            5. Include relevant examples from the context
            6. If discussing technical concepts, explain them clearly
            
            Context:
            {context}"""),
            ("human", "{question}")
        ])
        
        chain = prompt | llm | StrOutputParser()
        response = chain.invoke({
            "context": context,
            "question": messages[-1].content
        })
        
        logger.info(f"Generated response length: {len(response)} characters")
        
        # Calculate metrics directly in generate
        try:
            dataset = Dataset.from_dict({
                "question": [messages[-1].content],
                "contexts": [[context]],
                "answer": [response],
                "ground_truth": [context]
            })
            
            metrics_dict = {}
            result = evaluate(dataset, metrics=[faithfulness, answer_relevancy, context_precision, context_recall, answer_correctness])
            
            metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
            metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
            metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
            metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
            metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
            
            logger.info(f"Metrics calculated: {metrics_dict}")
        except Exception as e:
            logger.error(f"Error calculating metrics: {str(e)}")
            metrics_dict = {}
        
        return {
            "response": response,
            "metrics": metrics_dict,  # Include metrics in the response
            "next": "evaluate"
        }
    except Exception as e:
        logger.error(f"Error in generation: {str(e)}")
        return {
            "response": "I apologize, but I encountered an error while generating a response. Please try again.",
            "metrics": {},  # Add empty metrics
            "next": "evaluate"
        }

# Define the RAGAS evaluation function
def evaluate_rag(state: AgentState) -> Dict:
    try:
        messages = state["messages"]
        context = state["context"]
        response = state["response"]
        
        # Detailed logging of input data
        logger.info("=== RAGAS Evaluation Debug Info ===")
        logger.info(f"Question: {messages[-1].content}")
        logger.info(f"Context length: {len(context)}")
        logger.info(f"Response length: {len(response)}")
        logger.info(f"Context preview: {context[:200]}...")
        logger.info(f"Response preview: {response[:200]}...")
        
        # Validate inputs
        if not context.strip():
            logger.error("Empty context detected")
            return {"context": context, "response": response, "metrics": {}, "next": END}
            
        if not response.strip():
            logger.error("Empty response detected")
            return {"context": context, "response": response, "metrics": {}, "next": END}
        
        # Check for minimum content requirements
        if len(context) < 50:
            logger.error(f"Context too short: {len(context)} characters")
            return {"context": context, "response": response, "metrics": {}, "next": END}
            
        if len(response) < 20:
            logger.error(f"Response too short: {len(response)} characters")
            return {"context": context, "response": response, "metrics": {}, "next": END}
        
        logger.info("Creating evaluation dataset...")
        try:
            # Create dataset for evaluation
            dataset = Dataset.from_dict({
                "question": [messages[-1].content],
                "contexts": [[context]],
                "answer": [response],
                "ground_truth": [context]  # Use context as ground truth for better evaluation
            })
            logger.info("Dataset created successfully")
            
            # Initialize metrics dictionary
            metrics_dict = {}
            
            # Evaluate each metric separately
            try:
                result = evaluate(dataset, metrics=[faithfulness])
                metrics_dict["faithfulness"] = float(np.mean(result["faithfulness"]))
                logger.info(f"Faithfulness calculated: {metrics_dict['faithfulness']}")
            except Exception as e:
                logger.error(f"Error calculating faithfulness: {str(e)}")
                metrics_dict["faithfulness"] = 0.0
            
            try:
                result = evaluate(dataset, metrics=[answer_relevancy])
                metrics_dict["answer_relevancy"] = float(np.mean(result["answer_relevancy"]))
                logger.info(f"Answer relevancy calculated: {metrics_dict['answer_relevancy']}")
            except Exception as e:
                logger.error(f"Error calculating answer_relevancy: {str(e)}")
                metrics_dict["answer_relevancy"] = 0.0
            
            try:
                result = evaluate(dataset, metrics=[context_precision])
                metrics_dict["context_precision"] = float(np.mean(result["context_precision"]))
                logger.info(f"Context precision calculated: {metrics_dict['context_precision']}")
            except Exception as e:
                logger.error(f"Error calculating context_precision: {str(e)}")
                metrics_dict["context_precision"] = 0.0
            
            try:
                result = evaluate(dataset, metrics=[context_recall])
                metrics_dict["context_recall"] = float(np.mean(result["context_recall"]))
                logger.info(f"Context recall calculated: {metrics_dict['context_recall']}")
            except Exception as e:
                logger.error(f"Error calculating context_recall: {str(e)}")
                metrics_dict["context_recall"] = 0.0
            
            try:
                result = evaluate(dataset, metrics=[answer_correctness])
                metrics_dict["answer_correctness"] = float(np.mean(result["answer_correctness"]))
                logger.info(f"Answer correctness calculated: {metrics_dict['answer_correctness']}")
            except Exception as e:
                logger.error(f"Error calculating answer_correctness: {str(e)}")
                metrics_dict["answer_correctness"] = 0.0
            
            logger.info(f"RAGAS metrics calculated: {metrics_dict}")
            return {"context": context, "response": response, "metrics": metrics_dict, "next": END}
            
        except Exception as eval_error:
            logger.error(f"Error during RAGAS evaluation: {str(eval_error)}")
            logger.error(f"Error type: {type(eval_error)}")
            return {"context": context, "response": response, "metrics": {}, "next": END}
            
    except Exception as e:
        logger.error(f"Error in RAGAS evaluation: {str(e)}")
        logger.error(f"Error type: {type(e)}")
        return {"context": context, "response": response, "metrics": {}, "next": END}

# Create the workflow
def create_rag_graph():
    workflow = StateGraph(AgentState)
    
    # Add nodes
    workflow.add_node("retrieve", retrieve)
    workflow.add_node("generate", generate)
    workflow.add_node("evaluate", evaluate_rag)
    
    # Add edges
    workflow.add_edge("retrieve", "generate")
    workflow.add_edge("generate", "evaluate")
    workflow.add_edge("evaluate", END)
    
    # Set entry point
    workflow.set_entry_point("retrieve")
    
    # Compile
    app = workflow.compile()
    return app

# Create the graph
rag_graph = create_rag_graph()