Test_Magus / app.py
SergeyO7's picture
Update app.py
f1f94c7 verified
raw
history blame
9.63 kB
# Hey, stranger! this code is for use of free rate of gemini llm
# which is limited by RPM (15/30). Testing has shown that if I put
# request delay 10 then search drops out timed out.
# Nevertheless, it scrored 35% which is good for me while two questions
# were dropped due to exceeding RPM. So, it is still possible to improve,
# e.g. deploying gemini 2.0 flash lite which has double RPM limit.
# Try it out!
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import aiohttp
import asyncio
import json
from agent import MagAgent
from token_bucket import Limiter, MemoryStorage
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Rate limiting configuration
RATE_LIMIT = 10 # Requests per minute
TOKEN_BUCKET_CAPACITY = RATE_LIMIT
TOKEN_BUCKET_REFILL_RATE = RATE_LIMIT / 60.0 # Tokens per second
# Initialize global token bucket with MemoryStorage
storage = MemoryStorage()
token_bucket = Limiter(rate=TOKEN_BUCKET_REFILL_RATE, capacity=TOKEN_BUCKET_CAPACITY, storage=storage)
async def fetch_questions(session: aiohttp.ClientSession, questions_url: str) -> list:
"""Fetch questions asynchronously."""
try:
async with session.get(questions_url, timeout=15) as response:
response.raise_for_status()
questions_data = await response.json()
if not questions_data:
print("Fetched questions list is empty.")
return []
print(f"Fetched {len(questions_data)} questions.")
return questions_data
except aiohttp.ClientError as e:
print(f"Error fetching questions: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return None
async def submit_answers(session: aiohttp.ClientSession, submit_url: str,
submission_data: dict) -> dict:
"""Submit answers asynchronously."""
try:
async with session.post(submit_url, json=submission_data, timeout=60) as response:
response.raise_for_status()
return await response.json()
except aiohttp.ClientResponseError as e:
print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}")
return None
except aiohttp.ClientError as e:
print(f"Submission Failed: Network error - {e}")
return None
except Exception as e:
print(f"An unexpected error occurred during submission: {e}")
return None
async def process_question(agent, question_text: str, task_id: str,
results_log: list):
"""Process a single question with global rate limiting."""
submitted_answer = None
try:
# Retry until a token is available
while not token_bucket.consume(1):
print(f"Rate limit reached for task {task_id}. Waiting to retry...")
await asyncio.sleep(60 / RATE_LIMIT)
submitted_answer = await agent(question_text)
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return {"task_id": task_id, "submitted_answer": submitted_answer}
except aiohttp.ClientResponseError as e:
if e.status == 429:
print(f"Rate limit hit for task {task_id}. Retrying after delay...")
await asyncio.sleep(60 / RATE_LIMIT)
while not token_bucket.consume(1):
await asyncio.sleep(60 / RATE_LIMIT)
try:
submitted_answer = await agent(question_text)
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return {"task_id": task_id, "submitted_answer": submitted_answer}
except Exception as retry_e:
submitted_answer = f"AGENT ERROR: {retry_e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
else:
submitted_answer = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
except Exception as e:
submitted_answer = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent =MagAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions Asynchronously
async with aiohttp.ClientSession() as session:
questions_data = await fetch_questions(session, questions_url)
if questions_data is None:
return "Error fetching questions.", None
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
# 3. Run Agent on Questions
# Process questions sequentially with rate limiting
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
if item.get("task_id") and item.get("question"):
result = await process_question(agent, item["question"], item["task_id"], results_log)
if result:
answers_payload.append(result)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit Answers Asynchronously
result_data = await submit_answers(session, submit_url, submission_data)
if result_data is None:
status_message = "Submission Failed."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Magus Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
---
**Notes:**
The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Mag Agent Evaluation...")
demo.launch(debug=True, share=False)