Spaces:
Running
Running
File size: 9,625 Bytes
495ce43 85971d9 483d915 53832a8 85971d9 aea1065 b63180f f1f94c7 f542976 e948527 aea1065 53832a8 4a3fbe8 483d915 33cffad 483d915 5ad0078 483d915 e948527 483d915 7c06e8b 483d915 85971d9 f542976 e948527 75a0ffb e948527 705dc8a 75a0ffb e948527 705dc8a e948527 75a0ffb 705dc8a 75a0ffb e948527 75a0ffb e948527 75a0ffb e948527 b63180f 483d915 85971d9 c309ccd 85971d9 483d915 85971d9 483d915 85971d9 483d915 85971d9 c309ccd 85971d9 483d915 85971d9 483d915 85971d9 483d915 85971d9 483d915 e948527 483d915 b63180f e948527 483d915 e948527 483d915 85971d9 89858c7 85971d9 89858c7 85971d9 89858c7 85971d9 5d12401 85971d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
# Hey, stranger! this code is for use of free rate of gemini llm
# which is limited by RPM (15/30). Testing has shown that if I put
# request delay 10 then search drops out timed out.
# Nevertheless, it scrored 35% which is good for me while two questions
# were dropped due to exceeding RPM. So, it is still possible to improve,
# e.g. deploying gemini 2.0 flash lite which has double RPM limit.
# Try it out!
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import aiohttp
import asyncio
import json
from agent import MagAgent
from token_bucket import Limiter, MemoryStorage
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Rate limiting configuration
RATE_LIMIT = 10 # Requests per minute
TOKEN_BUCKET_CAPACITY = RATE_LIMIT
TOKEN_BUCKET_REFILL_RATE = RATE_LIMIT / 60.0 # Tokens per second
# Initialize global token bucket with MemoryStorage
storage = MemoryStorage()
token_bucket = Limiter(rate=TOKEN_BUCKET_REFILL_RATE, capacity=TOKEN_BUCKET_CAPACITY, storage=storage)
async def fetch_questions(session: aiohttp.ClientSession, questions_url: str) -> list:
"""Fetch questions asynchronously."""
try:
async with session.get(questions_url, timeout=15) as response:
response.raise_for_status()
questions_data = await response.json()
if not questions_data:
print("Fetched questions list is empty.")
return []
print(f"Fetched {len(questions_data)} questions.")
return questions_data
except aiohttp.ClientError as e:
print(f"Error fetching questions: {e}")
return None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return None
async def submit_answers(session: aiohttp.ClientSession, submit_url: str,
submission_data: dict) -> dict:
"""Submit answers asynchronously."""
try:
async with session.post(submit_url, json=submission_data, timeout=60) as response:
response.raise_for_status()
return await response.json()
except aiohttp.ClientResponseError as e:
print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}")
return None
except aiohttp.ClientError as e:
print(f"Submission Failed: Network error - {e}")
return None
except Exception as e:
print(f"An unexpected error occurred during submission: {e}")
return None
async def process_question(agent, question_text: str, task_id: str,
results_log: list):
"""Process a single question with global rate limiting."""
submitted_answer = None
try:
# Retry until a token is available
while not token_bucket.consume(1):
print(f"Rate limit reached for task {task_id}. Waiting to retry...")
await asyncio.sleep(60 / RATE_LIMIT)
submitted_answer = await agent(question_text)
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return {"task_id": task_id, "submitted_answer": submitted_answer}
except aiohttp.ClientResponseError as e:
if e.status == 429:
print(f"Rate limit hit for task {task_id}. Retrying after delay...")
await asyncio.sleep(60 / RATE_LIMIT)
while not token_bucket.consume(1):
await asyncio.sleep(60 / RATE_LIMIT)
try:
submitted_answer = await agent(question_text)
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return {"task_id": task_id, "submitted_answer": submitted_answer}
except Exception as retry_e:
submitted_answer = f"AGENT ERROR: {retry_e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
else:
submitted_answer = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
except Exception as e:
submitted_answer = f"AGENT ERROR: {e}"
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
return None
async def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent =MagAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions Asynchronously
async with aiohttp.ClientSession() as session:
questions_data = await fetch_questions(session, questions_url)
if questions_data is None:
return "Error fetching questions.", None
if not questions_data:
return "Fetched questions list is empty or invalid format.", None
# 3. Run Agent on Questions
# Process questions sequentially with rate limiting
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
if item.get("task_id") and item.get("question"):
result = await process_question(agent, item["question"], item["task_id"], results_log)
if result:
answers_payload.append(result)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit Answers Asynchronously
result_data = await submit_answers(session, submit_url, submission_data)
if result_data is None:
status_message = "Submission Failed."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Magus Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
---
**Notes:**
The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Mag Agent Evaluation...")
demo.launch(debug=True, share=False) |