File size: 9,625 Bytes
495ce43
 
 
 
 
 
 
 
85971d9
 
 
 
 
483d915
 
 
 
53832a8
85971d9
 
 
 
aea1065
b63180f
f1f94c7
f542976
e948527
aea1065
53832a8
 
 
4a3fbe8
483d915
 
 
33cffad
483d915
 
 
 
 
 
 
 
 
 
5ad0078
483d915
 
 
e948527
 
483d915
 
 
 
7c06e8b
483d915
 
 
 
 
 
 
 
 
85971d9
f542976
 
e948527
75a0ffb
e948527
705dc8a
 
 
75a0ffb
 
e948527
705dc8a
e948527
 
 
75a0ffb
705dc8a
 
75a0ffb
 
 
 
 
 
 
 
e948527
75a0ffb
 
 
e948527
75a0ffb
 
e948527
b63180f
483d915
85971d9
c309ccd
85971d9
 
 
483d915
85971d9
 
483d915
85971d9
 
 
 
 
 
 
 
 
483d915
85971d9
c309ccd
85971d9
 
 
483d915
85971d9
 
 
483d915
 
 
 
 
85971d9
483d915
85971d9
483d915
e948527
483d915
 
 
b63180f
e948527
 
 
 
 
 
483d915
 
 
e948527
483d915
 
 
 
 
 
 
 
 
 
 
 
85971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
89858c7
85971d9
 
 
89858c7
 
85971d9
89858c7
 
85971d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d12401
85971d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Hey, stranger! this code is for use of free rate of gemini llm 
# which is limited by RPM (15/30). Testing has shown that if I put 
# request delay 10 then search drops out timed out.
# Nevertheless, it scrored 35% which is good for me while two questions 
# were dropped due to exceeding RPM. So, it is still possible to improve,
# e.g. deploying gemini 2.0 flash lite which has double RPM limit.
# Try it out!

import os
import gradio as gr
import requests
import inspect
import pandas as pd
import aiohttp
import asyncio
import json
from agent import MagAgent  
from token_bucket import Limiter, MemoryStorage 

# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# Rate limiting configuration
RATE_LIMIT = 10  # Requests per minute
TOKEN_BUCKET_CAPACITY = RATE_LIMIT
TOKEN_BUCKET_REFILL_RATE = RATE_LIMIT / 60.0  # Tokens per second

# Initialize global token bucket with MemoryStorage
storage = MemoryStorage()
token_bucket = Limiter(rate=TOKEN_BUCKET_REFILL_RATE, capacity=TOKEN_BUCKET_CAPACITY, storage=storage)

async def fetch_questions(session: aiohttp.ClientSession, questions_url: str) -> list:
    """Fetch questions asynchronously."""
    try:
        async with session.get(questions_url, timeout=15) as response:
            response.raise_for_status()
            questions_data = await response.json()
            if not questions_data:
                print("Fetched questions list is empty.")
                return []
            print(f"Fetched {len(questions_data)} questions.")
            return questions_data
    except aiohttp.ClientError as e:
        print(f"Error fetching questions: {e}")
        return None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return None

async def submit_answers(session: aiohttp.ClientSession, submit_url: str,
 submission_data: dict) -> dict:
    """Submit answers asynchronously."""
    try:
        async with session.post(submit_url, json=submission_data, timeout=60) as response:
            response.raise_for_status()
            return await response.json()
    except aiohttp.ClientResponseError as e:
        print(f"Submission Failed: Server responded with status {e.status}. Detail: {e.message}")
        return None
    except aiohttp.ClientError as e:
        print(f"Submission Failed: Network error - {e}")
        return None
    except Exception as e:
        print(f"An unexpected error occurred during submission: {e}")
        return None

async def process_question(agent, question_text: str, task_id: str,
 results_log: list):
    """Process a single question with global rate limiting."""
    submitted_answer = None
    try:
        # Retry until a token is available
        while not token_bucket.consume(1):
            print(f"Rate limit reached for task {task_id}. Waiting to retry...")
            await asyncio.sleep(60 / RATE_LIMIT)
        submitted_answer = await agent(question_text)
        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        return {"task_id": task_id, "submitted_answer": submitted_answer}
    except aiohttp.ClientResponseError as e:
        if e.status == 429:
            print(f"Rate limit hit for task {task_id}. Retrying after delay...")
            await asyncio.sleep(60 / RATE_LIMIT)
            while not token_bucket.consume(1):
                await asyncio.sleep(60 / RATE_LIMIT)
            try:
                submitted_answer = await agent(question_text)
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
                return {"task_id": task_id, "submitted_answer": submitted_answer}
            except Exception as retry_e:
                submitted_answer = f"AGENT ERROR: {retry_e}"
                results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
                return None
        else:
            submitted_answer = f"AGENT ERROR: {e}"
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            return None
    except Exception as e:
        submitted_answer = f"AGENT ERROR: {e}"
        results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
        return None

async def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions asynchronously, runs the MagAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent =MagAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions Asynchronously
    async with aiohttp.ClientSession() as session:
        questions_data = await fetch_questions(session, questions_url)
        if questions_data is None:
            return "Error fetching questions.", None
        if not questions_data:
            return "Fetched questions list is empty or invalid format.", None

        # 3. Run Agent on Questions
        # Process questions sequentially with rate limiting
        results_log = []
        answers_payload = []
        print(f"Running agent on {len(questions_data)} questions...")

        for item in questions_data:
            if item.get("task_id") and item.get("question"):
                result = await process_question(agent, item["question"], item["task_id"], results_log)
                if result:
                    answers_payload.append(result)

        if not answers_payload:
            print("Agent did not produce any answers to submit.")
            return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
            
        # 4. Prepare Submission
        submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
        status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
        print(status_update)

        # 5. Submit Answers Asynchronously
        result_data = await submit_answers(session, submit_url, submission_data)
        if result_data is None:
            status_message = "Submission Failed."
            print(status_message)
            results_df = pd.DataFrame(results_log)
            return status_message, results_df

        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Magus Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Log in to your Hugging Face account using the button below.
        2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, and submit answers.
        ---
        **Notes:**
        The agent uses asynchronous operations for efficiency. Answers are processed and submitted asynchronously.
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    # Removed max_rows=10 from DataFrame constructor
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    # Check for SPACE_HOST and SPACE_ID at startup for information
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup: # Print repo URLs if SPACE_ID is found
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Mag Agent Evaluation...")
    demo.launch(debug=True, share=False)