Spaces:
Running
Running
import os | |
import gradio as gr | |
import requests | |
import pandas as pd | |
import json | |
import time | |
from pathlib import Path | |
from langchain_core.messages import HumanMessage | |
from requests.adapters import HTTPAdapter | |
from urllib3.util.retry import Retry | |
from datetime import datetime, timedelta | |
from agent import AdvancedAgent # Assuming you have an AdvancedAgent class in agent.py | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
CACHE_FILE = "questions_cache.json" | |
CACHE_EXPIRATION = timedelta(days=1) # Cache expires after 1 day | |
MAX_RETRIES = 5 | |
INITIAL_BACKOFF = 5 # Initial backoff time in seconds for retries | |
def create_retry_session(): | |
"""Create a requests session with retry logic for handling 429 errors.""" | |
session = requests.Session() | |
retries = Retry( | |
total=MAX_RETRIES, | |
backoff_factor=INITIAL_BACKOFF, | |
status_forcelist=[429], | |
allowed_methods=["GET", "POST"] | |
) | |
adapter = HTTPAdapter(max_retries=retries) | |
session.mount("http://", adapter) | |
session.mount("https://", adapter) | |
return session | |
def load_cached_questions(): | |
"""Load cached questions if the cache is still valid.""" | |
cache_path = Path(CACHE_FILE) | |
if cache_path.exists(): | |
try: | |
with cache_path.open('r') as f: | |
cache_data = json.load(f) | |
timestamp = datetime.fromisoformat(cache_data['timestamp']) | |
if datetime.now() - timestamp < CACHE_EXPIRATION: | |
questions = [ | |
{ | |
"task_id": item["task_id"], | |
"question": HumanMessage(content=item["question"]) | |
} | |
for item in cache_data['questions'] | |
] | |
print(f"Loaded {len(questions)} questions from cache.") | |
return questions | |
else: | |
print("Cache expired.") | |
except Exception as e: | |
print(f"Error loading cached questions: {e}") | |
return None | |
def cache_questions(questions_data): | |
"""Cache questions with a timestamp.""" | |
cache_path = Path(CACHE_FILE) | |
try: | |
cache_data = { | |
"timestamp": datetime.now().isoformat(), | |
"questions": [ | |
{ | |
"task_id": item["task_id"], | |
"question": item["question"].content | |
} | |
for item in questions_data | |
] | |
} | |
with cache_path.open('w') as f: | |
json.dump(cache_data, f, indent=2) | |
print(f"Cached {len(questions_data)} questions to {CACHE_FILE}.") | |
except Exception as e: | |
print(f"Error caching questions: {e}") | |
def fetch_questions_with_retry(url): | |
"""Fetch questions with retry logic for 429 errors.""" | |
session = create_retry_session() | |
try: | |
response = session.get(url, timeout=15) | |
response.raise_for_status() | |
return response.json() | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
raise e | |
def load_questions(): | |
"""Load questions from cache or fetch from server with retries.""" | |
questions_data = load_cached_questions() | |
if questions_data is None: | |
print(f"Fetching questions from: {DEFAULT_API_URL}/questions") | |
try: | |
raw_questions = fetch_questions_with_retry(f"{DEFAULT_API_URL}/questions") | |
if not raw_questions: | |
raise ValueError("Fetched questions list is empty.") | |
questions_data = [ | |
{ | |
"task_id": item["task_id"], | |
"question": HumanMessage(content=item["question"]) | |
} | |
for item in raw_questions | |
] | |
cache_questions(questions_data) | |
except Exception as e: | |
print(f"Error fetching questions: {e}") | |
# Try to load expired cache as fallback | |
cache_data = load_cached_questions() | |
if cache_data: | |
print("Using expired cache due to API failure.") | |
questions_data = cache_data | |
else: | |
raise e | |
return questions_data | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the AdvancedAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") | |
if profile: | |
username = f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent | |
try: | |
agent = AdvancedAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Load Questions (from cache or server) | |
try: | |
questions_data = load_questions() | |
except Exception as e: | |
print(f"Failed to load questions: {e}") | |
return f"Failed to load questions: {e}", None | |
# 3. Run Agent (simplified for this example) | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item["task_id"] | |
question = item["question"] | |
try: | |
submitted_answer = agent(question.content) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question.content, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question.content, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit (with retry logic) | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
session = create_retry_session() | |
response = session.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Advanced Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Modify the `agent.py` to define your agent's logic, tools, and packages. | |
2. Log in to your Hugging Face account using the button below. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
The submission process may take time due to the number of questions. | |
Questions are cached locally to reduce API calls. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?).") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Advanced Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |