File size: 10,737 Bytes
10e9b7d
 
eccf8e4
3c4371f
417b294
 
 
 
 
 
0bec3cf
 
10e9b7d
e80aab9
3db6293
417b294
0bec3cf
 
 
e80aab9
417b294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bec3cf
 
 
417b294
 
 
 
 
0bec3cf
417b294
 
 
 
 
 
 
 
 
 
 
 
 
 
0bec3cf
417b294
 
 
 
 
 
 
 
 
 
 
 
 
 
0bec3cf
 
 
417b294
0bec3cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417b294
0bec3cf
31243f4
417b294
31243f4
 
7d65c66
417b294
3c4371f
7e4a06b
417b294
3c4371f
7e4a06b
3c4371f
7d65c66
3c4371f
7e4a06b
31243f4
e80aab9
417b294
31243f4
417b294
31243f4
3c4371f
31243f4
417b294
36ed51a
c1fd3d2
3c4371f
0bec3cf
 
 
 
 
 
e80aab9
0bec3cf
7d65c66
 
0bec3cf
 
 
 
 
 
7d65c66
417b294
 
0bec3cf
417b294
 
0bec3cf
 
 
 
 
 
 
31243f4
 
3c4371f
31243f4
 
417b294
7d65c66
3c4371f
31243f4
e80aab9
0bec3cf
31243f4
e80aab9
417b294
 
e80aab9
 
31243f4
e80aab9
 
3c4371f
190ba5c
3c4371f
e80aab9
 
31243f4
 
e80aab9
3c4371f
e80aab9
 
3c4371f
e80aab9
7d65c66
3c4371f
31243f4
7d65c66
31243f4
3c4371f
 
 
 
 
e80aab9
31243f4
 
 
 
7d65c66
31243f4
 
 
 
e80aab9
 
 
417b294
0ee0419
e514fd7
 
417b294
 
 
e514fd7
 
417b294
 
e514fd7
e80aab9
 
7e4a06b
31243f4
9088b99
7d65c66
e80aab9
31243f4
 
 
e80aab9
 
 
3c4371f
 
417b294
7d65c66
3c4371f
 
7d65c66
3c4371f
7d65c66
 
417b294
7d65c66
 
 
 
417b294
7d65c66
3c4371f
417b294
307a321
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import gradio as gr
import requests
import pandas as pd
import json
import time
from pathlib import Path
from langchain_core.messages import HumanMessage
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from datetime import datetime, timedelta
from agent import AdvancedAgent  # Assuming you have an AdvancedAgent class in agent.py

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
CACHE_FILE = "questions_cache.json"
CACHE_EXPIRATION = timedelta(days=1)  # Cache expires after 1 day
MAX_RETRIES = 5
INITIAL_BACKOFF = 5  # Initial backoff time in seconds for retries

def create_retry_session():
    """Create a requests session with retry logic for handling 429 errors."""
    session = requests.Session()
    retries = Retry(
        total=MAX_RETRIES,
        backoff_factor=INITIAL_BACKOFF,
        status_forcelist=[429],
        allowed_methods=["GET", "POST"]
    )
    adapter = HTTPAdapter(max_retries=retries)
    session.mount("http://", adapter)
    session.mount("https://", adapter)
    return session

def load_cached_questions():
    """Load cached questions if the cache is still valid."""
    cache_path = Path(CACHE_FILE)
    if cache_path.exists():
        try:
            with cache_path.open('r') as f:
                cache_data = json.load(f)
                timestamp = datetime.fromisoformat(cache_data['timestamp'])
                if datetime.now() - timestamp < CACHE_EXPIRATION:
                    questions = [
                        {
                            "task_id": item["task_id"],
                            "question": HumanMessage(content=item["question"])
                        }
                        for item in cache_data['questions']
                    ]
                    print(f"Loaded {len(questions)} questions from cache.")
                    return questions
                else:
                    print("Cache expired.")
        except Exception as e:
            print(f"Error loading cached questions: {e}")
    return None

def cache_questions(questions_data):
    """Cache questions with a timestamp."""
    cache_path = Path(CACHE_FILE)
    try:
        cache_data = {
            "timestamp": datetime.now().isoformat(),
            "questions": [
                {
                    "task_id": item["task_id"],
                    "question": item["question"].content
                }
                for item in questions_data
            ]
        }
        with cache_path.open('w') as f:
            json.dump(cache_data, f, indent=2)
        print(f"Cached {len(questions_data)} questions to {CACHE_FILE}.")
    except Exception as e:
        print(f"Error caching questions: {e}")

def fetch_questions_with_retry(url):
    """Fetch questions with retry logic for 429 errors."""
    session = create_retry_session()
    try:
        response = session.get(url, timeout=15)
        response.raise_for_status()
        return response.json()
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        raise e

def load_questions():
    """Load questions from cache or fetch from server with retries."""
    questions_data = load_cached_questions()
    if questions_data is None:
        print(f"Fetching questions from: {DEFAULT_API_URL}/questions")
        try:
            raw_questions = fetch_questions_with_retry(f"{DEFAULT_API_URL}/questions")
            if not raw_questions:
                raise ValueError("Fetched questions list is empty.")
            questions_data = [
                {
                    "task_id": item["task_id"],
                    "question": HumanMessage(content=item["question"])
                }
                for item in raw_questions
            ]
            cache_questions(questions_data)
        except Exception as e:
            print(f"Error fetching questions: {e}")
            # Try to load expired cache as fallback
            cache_data = load_cached_questions()
            if cache_data:
                print("Using expired cache due to API failure.")
                questions_data = cache_data
            else:
                raise e
    return questions_data

def run_and_submit_all(profile: gr.OAuthProfile | None):
    """
    Fetches all questions, runs the AdvancedAgent on them, submits all answers,
    and displays the results.
    """
    # --- Determine HF Space Runtime URL and Repo URL ---
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    try:
        agent = AdvancedAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None

    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Load Questions (from cache or server)
    try:
        questions_data = load_questions()
    except Exception as e:
        print(f"Failed to load questions: {e}")
        return f"Failed to load questions: {e}", None

    # 3. Run Agent (simplified for this example)
    results_log = []
    answers_payload = []
    print(f"Running agent on {len(questions_data)} questions...")
    for item in questions_data:
        task_id = item["task_id"]
        question = item["question"]
        try:
            submitted_answer = agent(question.content)
            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({
                "Task ID": task_id,
                "Question": question.content,
                "Submitted Answer": submitted_answer
            })
        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question.content,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })

    if not answers_payload:
        print("Agent did not produce any answers to submit.")
        return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)

    # 4. Prepare Submission
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit (with retry logic)
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        session = create_retry_session()
        response = session.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Advanced Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**
        1. Modify the `agent.py` to define your agent's logic, tools, and packages.
        2. Log in to your Hugging Face account using the button below.
        3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
        ---
        **Disclaimers:**
        The submission process may take time due to the number of questions.
        Questions are cached locally to reduce API calls.
        """
    )

    gr.LoginButton()
    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table]
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?).")

    print("-"*(60 + len(" App Starting ")) + "\n")
    print("Launching Gradio Interface for Advanced Agent Evaluation...")
    demo.launch(debug=True, share=False)