Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,113 @@
|
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
"""
|
24 |
-
Fetches all questions, runs the
|
25 |
and displays the results.
|
26 |
"""
|
27 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
28 |
-
space_id = os.getenv("SPACE_ID")
|
29 |
|
30 |
if profile:
|
31 |
-
username= f"{profile.username}"
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
print("User not logged in.")
|
@@ -38,60 +117,80 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
|
41 |
-
# 1. Instantiate Agent
|
42 |
try:
|
43 |
-
agent =
|
44 |
except Exception as e:
|
45 |
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
|
51 |
-
# 2. Fetch Questions
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
# 3. Run
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
-
results_log.append({
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
if not answers_payload:
|
91 |
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
print(status_update)
|
@@ -99,14 +198,15 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
99 |
# 5. Submit
|
100 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
-
|
|
|
103 |
response.raise_for_status()
|
104 |
result_data = response.json()
|
105 |
final_status = (
|
106 |
f"Submission Successful!\n"
|
107 |
f"User: {result_data.get('username')}\n"
|
108 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?'
|
110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
)
|
112 |
print("Submission successful.")
|
@@ -139,31 +239,25 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
139 |
results_df = pd.DataFrame(results_log)
|
140 |
return status_message, results_df
|
141 |
|
142 |
-
|
143 |
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
153 |
-
|
154 |
---
|
155 |
**Disclaimers:**
|
156 |
-
|
157 |
-
|
158 |
"""
|
159 |
)
|
160 |
|
161 |
gr.LoginButton()
|
162 |
-
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
|
169 |
run_button.click(
|
@@ -173,9 +267,8 @@ with gr.Blocks() as demo:
|
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
179 |
|
180 |
if space_host_startup:
|
181 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
@@ -183,14 +276,14 @@ if __name__ == "__main__":
|
|
183 |
else:
|
184 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
185 |
|
186 |
-
if space_id_startup:
|
187 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
188 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
else:
|
191 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?).
|
192 |
|
193 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
1 |
+
```python
|
2 |
import os
|
3 |
import gradio as gr
|
4 |
import requests
|
|
|
5 |
import pandas as pd
|
6 |
+
import json
|
7 |
+
import time
|
8 |
+
import asyncio
|
9 |
+
from concurrent.futures import ThreadPoolExecutor
|
10 |
+
from pathlib import Path
|
11 |
+
from langchain_core.messages import HumanMessage
|
12 |
+
from requests.adapters import HTTPAdapter
|
13 |
+
from urllib3.util.retry import Retry
|
14 |
+
from agent import AdvancedAgent
|
15 |
|
|
|
16 |
# --- Constants ---
|
17 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
18 |
+
CACHE_FILE = "questions_cache.json"
|
19 |
+
CACHE_EXPIRATION_SECONDS = 86400 # 1 day
|
20 |
+
MAX_RETRIES = 3
|
21 |
+
INITIAL_BACKOFF = 2 # seconds
|
22 |
|
23 |
+
def create_retry_session():
|
24 |
+
"""Create a requests session with retry logic for handling 429 errors."""
|
25 |
+
session = requests.Session()
|
26 |
+
retries = Retry(
|
27 |
+
total=MAX_RETRIES,
|
28 |
+
backoff_factor=INITIAL_BACKOFF,
|
29 |
+
status_forcelist=[429],
|
30 |
+
allowed_methods=["GET", "POST"]
|
31 |
+
)
|
32 |
+
adapter = HTTPAdapter(max_retries=retries)
|
33 |
+
session.mount("http://", adapter)
|
34 |
+
session.mount("https://", adapter)
|
35 |
+
return session
|
36 |
+
|
37 |
+
def load_cached_questions():
|
38 |
+
"""Load cached questions if the cache is still valid."""
|
39 |
+
cache_path = Path(CACHE_FILE)
|
40 |
+
if cache_path.exists():
|
41 |
+
try:
|
42 |
+
with cache_path.open('r') as f:
|
43 |
+
data = json.load(f)
|
44 |
+
cached_time = data.get("timestamp")
|
45 |
+
if cached_time and (time.time() - cached_time) < CACHE_EXPIRATION_SECONDS:
|
46 |
+
questions = [
|
47 |
+
{
|
48 |
+
"task_id": item["task_id"],
|
49 |
+
"question": HumanMessage(content=item["question"])
|
50 |
+
}
|
51 |
+
for item in data["questions"]
|
52 |
+
]
|
53 |
+
print(f"Loaded {len(questions)} questions from cache.")
|
54 |
+
return questions
|
55 |
+
else:
|
56 |
+
print("Cache expired.")
|
57 |
+
except Exception as e:
|
58 |
+
print(f"Error loading cached questions: {e}")
|
59 |
+
return None
|
60 |
+
|
61 |
+
def cache_questions(questions_data):
|
62 |
+
"""Cache questions with a timestamp."""
|
63 |
+
cache_path = Path(CACHE_FILE)
|
64 |
+
try:
|
65 |
+
cache_data = {
|
66 |
+
"timestamp": time.time(),
|
67 |
+
"questions": [
|
68 |
+
{
|
69 |
+
"task_id": item["task_id"],
|
70 |
+
"question": item["question"].content
|
71 |
+
}
|
72 |
+
for item in questions_data
|
73 |
+
]
|
74 |
+
}
|
75 |
+
with cache_path.open('w') as f:
|
76 |
+
json.dump(cache_data, f, indent=2)
|
77 |
+
print(f"Cached {len(questions_data)} questions to {CACHE_FILE}.")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"Error caching questions: {e}")
|
80 |
+
|
81 |
+
async def process_question(agent, item):
|
82 |
+
"""Process a single question using the agent."""
|
83 |
+
task_id = item["task_id"]
|
84 |
+
question = item["question"]
|
85 |
+
try:
|
86 |
+
loop = asyncio.get_event_loop()
|
87 |
+
submitted_answer = await loop.run_in_executor(None, agent, question.content)
|
88 |
+
return {
|
89 |
+
"task_id": task_id,
|
90 |
+
"submitted_answer": submitted_answer,
|
91 |
+
"question_text": question.content
|
92 |
+
}
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error processing task {task_id}: {e}")
|
95 |
+
return {
|
96 |
+
"task_id": task_id,
|
97 |
+
"submitted_answer": f"AGENT ERROR: {e}",
|
98 |
+
"question_text": question.content
|
99 |
+
}
|
100 |
+
|
101 |
+
async def run_and_submit_all(profile: gr.OAuthProfile | None):
|
102 |
"""
|
103 |
+
Fetches all questions, runs the AdvancedAgent on them, submits all answers,
|
104 |
and displays the results.
|
105 |
"""
|
106 |
# --- Determine HF Space Runtime URL and Repo URL ---
|
107 |
+
space_id = os.getenv("SPACE_ID")
|
108 |
|
109 |
if profile:
|
110 |
+
username = f"{profile.username}"
|
111 |
print(f"User logged in: {username}")
|
112 |
else:
|
113 |
print("User not logged in.")
|
|
|
117 |
questions_url = f"{api_url}/questions"
|
118 |
submit_url = f"{api_url}/submit"
|
119 |
|
120 |
+
# 1. Instantiate Agent
|
121 |
try:
|
122 |
+
agent = AdvancedAgent()
|
123 |
except Exception as e:
|
124 |
print(f"Error instantiating agent: {e}")
|
125 |
return f"Error initializing agent: {e}", None
|
126 |
+
|
127 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
128 |
print(agent_code)
|
129 |
|
130 |
+
# 2. Fetch or Load Questions
|
131 |
+
questions_data = load_cached_questions()
|
132 |
+
if questions_data is None:
|
133 |
+
print(f"Fetching questions from: {questions_url}")
|
134 |
+
try:
|
135 |
+
session = create_retry_session()
|
136 |
+
response = session.get(questions_url, timeout=15)
|
137 |
+
response.raise_for_status()
|
138 |
+
raw_questions = response.json()
|
139 |
+
if not raw_questions:
|
140 |
+
print("Fetched questions list is empty.")
|
141 |
+
return "Fetched questions list is empty or invalid format.", None
|
142 |
+
questions_data = [
|
143 |
+
{
|
144 |
+
"task_id": item["task_id"],
|
145 |
+
"question": HumanMessage(content=item["question"])
|
146 |
+
}
|
147 |
+
for item in raw_questions
|
148 |
+
]
|
149 |
+
print(f"Fetched {len(questions_data)} questions.")
|
150 |
+
cache_questions(questions_data)
|
151 |
+
except requests.exceptions.RequestException as e:
|
152 |
+
print(f"Error fetching questions: {e}")
|
153 |
+
# Fallback to cache even if expired
|
154 |
+
questions_data = load_cached_questions()
|
155 |
+
if questions_data:
|
156 |
+
print("Using expired cache due to API failure.")
|
157 |
+
else:
|
158 |
+
return f"Error fetching questions and no valid cache: {e}", None
|
159 |
+
except requests.exceptions.JSONDecodeError as e:
|
160 |
+
print(f"Error decoding JSON response: {e}")
|
161 |
+
return f"Error decoding server response: {e}", None
|
162 |
+
except Exception as e:
|
163 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
164 |
+
return f"An unexpected error occurred: {e}", None
|
165 |
|
166 |
+
# 3. Run Agent Asynchronously
|
167 |
results_log = []
|
168 |
answers_payload = []
|
169 |
+
print(f"Running agent on {len(questions_data)} questions asynchronously...")
|
170 |
+
|
171 |
+
with ThreadPoolExecutor(max_workers=5) as executor:
|
172 |
+
tasks = [process_question(agent, item) for item in questions_data]
|
173 |
+
responses = await asyncio.gather(*tasks, return_exceptions=True)
|
174 |
+
|
175 |
+
for response in responses:
|
176 |
+
if isinstance(response, Exception):
|
177 |
+
print(f"Unexpected error in async processing: {response}")
|
178 |
+
continue
|
179 |
+
task_id = response["task_id"]
|
180 |
+
submitted_answer = response["submitted_answer"]
|
181 |
+
question_text = response["question_text"]
|
182 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
183 |
+
results_log.append({
|
184 |
+
"Task ID": task_id,
|
185 |
+
"Question": question_text,
|
186 |
+
"Submitted Answer": submitted_answer
|
187 |
+
})
|
188 |
|
189 |
if not answers_payload:
|
190 |
print("Agent did not produce any answers to submit.")
|
191 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
192 |
|
193 |
+
# 4. Prepare Submission
|
194 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
195 |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
196 |
print(status_update)
|
|
|
198 |
# 5. Submit
|
199 |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
200 |
try:
|
201 |
+
session = create_retry_session()
|
202 |
+
response = session.post(submit_url, json=submission_data, timeout=60)
|
203 |
response.raise_for_status()
|
204 |
result_data = response.json()
|
205 |
final_status = (
|
206 |
f"Submission Successful!\n"
|
207 |
f"User: {result_data.get('username')}\n"
|
208 |
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
209 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?']} correct)\n"
|
210 |
f"Message: {result_data.get('message', 'No message received.')}"
|
211 |
)
|
212 |
print("Submission successful.")
|
|
|
239 |
results_df = pd.DataFrame(results_log)
|
240 |
return status_message, results_df
|
241 |
|
|
|
242 |
# --- Build Gradio Interface using Blocks ---
|
243 |
with gr.Blocks() as demo:
|
244 |
+
gr.Markdown("# Advanced Agent Evaluation Runner")
|
245 |
gr.Markdown(
|
246 |
"""
|
247 |
**Instructions:**
|
248 |
+
1. Modify the `agent.py` to define your agent's logic, tools, and packages.
|
249 |
+
2. Log in to your Hugging Face account using the button below.
|
250 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
|
|
|
|
251 |
---
|
252 |
**Disclaimers:**
|
253 |
+
The submission process may take time due to the number of questions.
|
254 |
+
Questions are cached locally to reduce API calls.
|
255 |
"""
|
256 |
)
|
257 |
|
258 |
gr.LoginButton()
|
|
|
259 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
260 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
261 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
262 |
|
263 |
run_button.click(
|
|
|
267 |
|
268 |
if __name__ == "__main__":
|
269 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
270 |
space_host_startup = os.getenv("SPACE_HOST")
|
271 |
+
space_id_startup = os.getenv("SPACE_ID")
|
272 |
|
273 |
if space_host_startup:
|
274 |
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
|
|
276 |
else:
|
277 |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
278 |
|
279 |
+
if space_id_startup:
|
280 |
print(f"✅ SPACE_ID found: {space_id_startup}")
|
281 |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
282 |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
283 |
else:
|
284 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?).")
|
285 |
|
286 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
287 |
+
print("Launching Gradio Interface for Advanced Agent Evaluation...")
|
288 |
+
demo.launch(debug=True, share=False)
|
289 |
+
```
|