Test_Magus / agent-chess.py
SergeyO7's picture
Rename agent.py to agent-chess.py
7186e28 verified
raw
history blame
16.8 kB
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
import time
import shutil
import traceback
@tool
def GoogleSearchTool(query: str) -> str:
"""Tool for performing Google searches using Custom Search JSON API
Args:
query (str): Search query string
Returns:
str: Formatted search results
"""
cse_id = os.environ.get("GOOGLE_CSE_ID")
if not api_key or not cse_id:
raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": api_key,
"cx": cse_id,
"q": query,
"num": 5 # Number of results to return
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
except Exception as e:
return f"Error performing Google search: {str(e)}"
#@tool
#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
# """Tool for analyzing images mentioned in the question.
# Args:
# question (str): The question text which may contain an image URL.
# Returns:
# str: Image description or error message.
# """
# # Extract URL from question using regex
# url_pattern = r'https?://\S+'
#
# match = re.search(url_pattern, question)
# if not match:
# return "No image URL found in the question."
# image_url = match.group(0)
#
# headers = {
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
# }
# try:
# response = requests.get(image_url, headers=headers)
# response.raise_for_status()
# image = Image.open(BytesIO(response.content)).convert("RGB")
# except Exception as e:
# return f"Error fetching image: {e}"
#
# agent = CodeAgent(
# tools=[],
# model=model,
# max_steps=10,
# verbosity_level=2
# )
#
# response = agent.run(
# "Describe in details the chess position you see in the image.",
# images=[image]
# )
#
# return f"The image description: '{response}'"
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
# model = LiteLLMModel(
# model_id="gemini/gemini-2.0-flash-preview-image-generation",
# api_key= os.environ.get("GEMINI_KEY"),
# max_tokens=8192
# )
self.model = LiteLLMModel(
model_id="gemini/gemini-1.5-flash",
api_key=os.environ.get("GEMINI_KEY"),
api_base="https://generativelanguage.googleapis.com/v1beta",
max_tokens=2048
)
# Initialize core tools
self.download_tool = self.DownloadTaskAttachmentTool(rate_limiter=rate_limiter)
self.chess_engine = self.ChessEngineTool()
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize rate limiter for DuckDuckGoSearchTool
search_rate_limiter = Limiter(rate=30/60, capacity=30, storage=MemoryStorage()) if not rate_limiter else rate_limiter
# Configure agent
self.agent = CodeAgent(
model=self.model,
tools=[
self.download_tool,
self.chess_engine,
self.SpeechToTextTool(),
self.ExcelReaderTool(),
self.VisitWebpageTool(),
self.PythonCodeReaderTool()
],
verbosity_level=2,
prompt_templates=prompt_templates,
add_base_tools=True,
max_steps=15
)
print("MagAgent initialized.")
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=20)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
from smolagents.utils import truncate_content
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except requests.exceptions.RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
self.is_initialized = False
self.rate_limiter = rate_limiter
self.default_api_url = default_api_url
def forward(self, task_id: str) -> str:
file_url = f"{self.default_api_url}/files/{task_id}"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
time.sleep(60 / 15) # Assuming 15 RPM
response = requests.get(file_url, stream=True, timeout=15)
response.raise_for_status()
# Determine file extension based on Content-Type
content_type = response.headers.get('Content-Type', '').lower()
if 'image/png' in content_type:
extension = '.png'
elif 'image/jpeg' in content_type:
extension = '.jpg'
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
extension = '.xlsx'
elif 'audio/mpeg' in content_type:
extension = '.mp3'
elif 'application/pdf' in content_type:
extension = '.pdf'
elif 'text/x-python' in content_type:
extension = '.py'
else:
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
local_file_path = f"downloads/{task_id}{extension}"
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
return f"Error downloading file for task {task_id}: {str(e)}"
except requests.exceptions.RequestException as e:
return f"Error downloading file for task {task_id}: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string"
,
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
class DownloadImageTool(Tool):
name = "download_chess_image"
description = "Downloads chess position image from task ID"
inputs = {'task_id': {'type': 'string'}}
output_type = "string"
def forward(self, task_id: str) -> str:
try:
response = requests.get(
f"https://agents-course-unit4-scoring.hf.space/files/{task_id}",
stream=True
)
response.raise_for_status()
img_path = f"chess_{task_id}.png"
with open(img_path, "wb") as f:
for chunk in response.iter_content(8192):
f.write(chunk)
return img_path
except Exception as e:
raise RuntimeError(f"Image download failed: {str(e)}")
class ChessEngineTool(Tool):
name = "stockfish_analysis"
description = "Analyzes chess position using Stockfish and returns best move"
inputs = {
"fen": {
"type": "string",
"description": "FEN string of the current chess position"
},
"time_limit": {
"type": "number",
"description": "Analysis time in seconds",
"nullable": True
}
}
output_type = "string"
def forward(self, fen: str, time_limit: float = 0.1) -> str: # Add time_limit parameter
"""Analyzes chess position using Stockfish engine"""
try:
import chess
import chess.engine
board = chess.Board(fen)
engine = chess.engine.SimpleEngine.popen_uci("stockfish")
result = engine.play(board, chess.engine.Limit(time=time_limit)) # Use parameter
engine.quit()
return board.san(result.move)
except Exception as e:
return f"Engine error: {str(e)}"
class PythonCodeReaderTool(Tool):
name = "read_python_code"
description = "Reads a Python (.py) file and returns its content as a string."
inputs = {
"file_path": {"type": "string", "description": "The path to the Python file to read"}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
if not os.path.exists(file_path):
return f"Error: Python file not found at {file_path}"
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error reading Python file: {str(e)}"
async def __call__(self, question: str, task_id: str) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
# Unified processing flow
img_path = self.download_tool(task_id)
response = await asyncio.to_thread(
self.model,
messages=[{
"role": "user",
"content": [
{"type": "text", "text": f"{question}\nProvide answer in algebraic notation."},
{"type": "image_url", "image_url": {"url": f"file://{img_path}"}}
]
}],
temperature=0.1
)
return response.choices[0].message.content
# if self.rate_limiter:
# while not self.rate_limiter.consume(1):
# print(f"Rate limit reached for task {task_id}. Waiting...")
# await asyncio.sleep(60 / 15) # Assuming 15 RPM
# # Include task_id in the task prompt to guide the agent
# task = (
# f"Answer the following question accurately and concisely: \n"
# f"{question} \n"
# f"If the question references an attachment, use tool to download it with task_id: {task_id}\n"
# f"Return the answer as a string."
# )
# print(f"Calling agent.run for task {task_id}...")
# response = await asyncio.to_thread(
# self.agent.run,
# task=task
# )
# print(f"Agent.run completed for task {task_id}.")
# response = str(response)
# if not response:
# print(f"No answer found for task {task_id}.")
# response = "No answer found."
# print(f"MagAgent response: {response[:50]}...")
# return response
except Exception as e:
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg