Spaces:
Running
Running
File size: 16,830 Bytes
93e7a8c 0962002 93e7a8c 0962002 93e7a8c 0962002 93e7a8c 0962002 93e7a8c 0962002 93e7a8c 0962002 d8d50b0 0962002 d8d50b0 0962002 d8d50b0 0962002 d8d50b0 0962002 d8d50b0 0962002 d8d50b0 39f2438 d8d50b0 877a88b d8d50b0 9752494 d8d50b0 877a88b d8d50b0 877a88b 0962002 93e7a8c 0962002 96187c5 0962002 b838851 3c4a95d 0962002 93e7a8c 0962002 93e7a8c 0962002 93e7a8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper
import time
import shutil
import traceback
@tool
def GoogleSearchTool(query: str) -> str:
"""Tool for performing Google searches using Custom Search JSON API
Args:
query (str): Search query string
Returns:
str: Formatted search results
"""
cse_id = os.environ.get("GOOGLE_CSE_ID")
if not api_key or not cse_id:
raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": api_key,
"cx": cse_id,
"q": query,
"num": 5 # Number of results to return
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
results = response.json().get("items", [])
return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
except Exception as e:
return f"Error performing Google search: {str(e)}"
#@tool
#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
# """Tool for analyzing images mentioned in the question.
# Args:
# question (str): The question text which may contain an image URL.
# Returns:
# str: Image description or error message.
# """
# # Extract URL from question using regex
# url_pattern = r'https?://\S+'
#
# match = re.search(url_pattern, question)
# if not match:
# return "No image URL found in the question."
# image_url = match.group(0)
#
# headers = {
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
# }
# try:
# response = requests.get(image_url, headers=headers)
# response.raise_for_status()
# image = Image.open(BytesIO(response.content)).convert("RGB")
# except Exception as e:
# return f"Error fetching image: {e}"
#
# agent = CodeAgent(
# tools=[],
# model=model,
# max_steps=10,
# verbosity_level=2
# )
#
# response = agent.run(
# "Describe in details the chess position you see in the image.",
# images=[image]
# )
#
# return f"The image description: '{response}'"
class MagAgent:
def __init__(self, rate_limiter: Optional[Limiter] = None):
"""Initialize the MagAgent with search tools."""
self.rate_limiter = rate_limiter
print("Initializing MagAgent with search tools...")
# model = LiteLLMModel(
# model_id="gemini/gemini-2.0-flash-preview-image-generation",
# api_key= os.environ.get("GEMINI_KEY"),
# max_tokens=8192
# )
self.model = LiteLLMModel(
model_id="gemini/gemini-1.5-flash",
api_key=os.environ.get("GEMINI_KEY"),
api_base="https://generativelanguage.googleapis.com/v1beta",
max_tokens=2048
)
# Initialize core tools
self.download_tool = self.DownloadTaskAttachmentTool(rate_limiter=rate_limiter)
self.chess_engine = self.ChessEngineTool()
# Load prompt templates
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
# Initialize rate limiter for DuckDuckGoSearchTool
search_rate_limiter = Limiter(rate=30/60, capacity=30, storage=MemoryStorage()) if not rate_limiter else rate_limiter
# Configure agent
self.agent = CodeAgent(
model=self.model,
tools=[
self.download_tool,
self.chess_engine,
self.SpeechToTextTool(),
self.ExcelReaderTool(),
self.VisitWebpageTool(),
self.PythonCodeReaderTool()
],
verbosity_level=2,
prompt_templates=prompt_templates,
add_base_tools=True,
max_steps=15
)
print("MagAgent initialized.")
class VisitWebpageTool(Tool):
name = "visit_webpage"
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
output_type = "string"
def forward(self, url: str) -> str:
try:
response = requests.get(url, timeout=20)
response.raise_for_status()
markdown_content = markdownify(response.text).strip()
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
from smolagents.utils import truncate_content
return truncate_content(markdown_content, 10000)
except requests.exceptions.Timeout:
return "The request timed out. Please try again later or check the URL."
except requests.exceptions.RequestException as e:
return f"Error fetching the webpage: {str(e)}"
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False
class DownloadTaskAttachmentTool(Tool):
name = "download_file"
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
output_type = "string"
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
self.is_initialized = False
self.rate_limiter = rate_limiter
self.default_api_url = default_api_url
def forward(self, task_id: str) -> str:
file_url = f"{self.default_api_url}/files/{task_id}"
print(f"Downloading file for task ID {task_id} from {file_url}...")
try:
if self.rate_limiter:
while not self.rate_limiter.consume(1):
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
time.sleep(60 / 15) # Assuming 15 RPM
response = requests.get(file_url, stream=True, timeout=15)
response.raise_for_status()
# Determine file extension based on Content-Type
content_type = response.headers.get('Content-Type', '').lower()
if 'image/png' in content_type:
extension = '.png'
elif 'image/jpeg' in content_type:
extension = '.jpg'
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
extension = '.xlsx'
elif 'audio/mpeg' in content_type:
extension = '.mp3'
elif 'application/pdf' in content_type:
extension = '.pdf'
elif 'text/x-python' in content_type:
extension = '.py'
else:
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
local_file_path = f"downloads/{task_id}{extension}"
os.makedirs("downloads", exist_ok=True)
with open(local_file_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
print(f"File downloaded successfully: {local_file_path}")
return local_file_path
except requests.exceptions.HTTPError as e:
if e.response.status_code == 429:
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
return f"Error downloading file for task {task_id}: {str(e)}"
except requests.exceptions.RequestException as e:
return f"Error downloading file for task {task_id}: {str(e)}"
class SpeechToTextTool(Tool):
name = "speech_to_text"
description = (
"Converts an audio file to text using OpenAI Whisper."
)
inputs = {
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
}
output_type = "string"
def __init__(self):
super().__init__()
self.model = whisper.load_model("base")
def forward(self, audio_path: str) -> str:
if not os.path.exists(audio_path):
return f"Error: File not found at {audio_path}"
result = self.model.transcribe(audio_path)
return result.get("text", "")
class ExcelReaderTool(Tool):
name = "excel_reader"
description = """
This tool reads and processes Excel files (.xlsx, .xls).
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
"""
inputs = {
"excel_path": {
"type": "string"
,
"description": "The path to the Excel file to read",
},
"sheet_name": {
"type": "string",
"description": "The name of the sheet to read (optional, defaults to first sheet)",
"nullable": True
}
}
output_type = "string"
def forward(self, excel_path: str, sheet_name: str = None) -> str:
"""
Reads and processes the given Excel file.
"""
try:
# Check if the file exists
if not os.path.exists(excel_path):
return f"Error: Excel file not found at {excel_path}"
import pandas as pd
# Read the Excel file
if sheet_name:
df = pd.read_excel(excel_path, sheet_name=sheet_name)
else:
df = pd.read_excel(excel_path)
# Get basic info about the data
info = {
"shape": df.shape,
"columns": list(df.columns),
"dtypes": df.dtypes.to_dict(),
"head": df.head(5).to_dict()
}
# Return formatted info
result = f"Excel file: {excel_path}\n"
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
result += "Columns:\n"
for col in info['columns']:
result += f"- {col} ({info['dtypes'].get(col)})\n"
result += "\nPreview (first 5 rows):\n"
result += df.head(5).to_string()
return result
except Exception as e:
return f"Error reading Excel file: {str(e)}"
class DownloadImageTool(Tool):
name = "download_chess_image"
description = "Downloads chess position image from task ID"
inputs = {'task_id': {'type': 'string'}}
output_type = "string"
def forward(self, task_id: str) -> str:
try:
response = requests.get(
f"https://agents-course-unit4-scoring.hf.space/files/{task_id}",
stream=True
)
response.raise_for_status()
img_path = f"chess_{task_id}.png"
with open(img_path, "wb") as f:
for chunk in response.iter_content(8192):
f.write(chunk)
return img_path
except Exception as e:
raise RuntimeError(f"Image download failed: {str(e)}")
class ChessEngineTool(Tool):
name = "stockfish_analysis"
description = "Analyzes chess position using Stockfish and returns best move"
inputs = {
"fen": {
"type": "string",
"description": "FEN string of the current chess position"
},
"time_limit": {
"type": "number",
"description": "Analysis time in seconds",
"nullable": True
}
}
output_type = "string"
def forward(self, fen: str, time_limit: float = 0.1) -> str: # Add time_limit parameter
"""Analyzes chess position using Stockfish engine"""
try:
import chess
import chess.engine
board = chess.Board(fen)
engine = chess.engine.SimpleEngine.popen_uci("stockfish")
result = engine.play(board, chess.engine.Limit(time=time_limit)) # Use parameter
engine.quit()
return board.san(result.move)
except Exception as e:
return f"Engine error: {str(e)}"
class PythonCodeReaderTool(Tool):
name = "read_python_code"
description = "Reads a Python (.py) file and returns its content as a string."
inputs = {
"file_path": {"type": "string", "description": "The path to the Python file to read"}
}
output_type = "string"
def forward(self, file_path: str) -> str:
try:
if not os.path.exists(file_path):
return f"Error: Python file not found at {file_path}"
with open(file_path, "r", encoding="utf-8") as file:
content = file.read()
return content
except Exception as e:
return f"Error reading Python file: {str(e)}"
async def __call__(self, question: str, task_id: str) -> str:
"""Process a question asynchronously using the MagAgent."""
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
try:
# Unified processing flow
img_path = self.download_tool(task_id)
response = await asyncio.to_thread(
self.model,
messages=[{
"role": "user",
"content": [
{"type": "text", "text": f"{question}\nProvide answer in algebraic notation."},
{"type": "image_url", "image_url": {"url": f"file://{img_path}"}}
]
}],
temperature=0.1
)
return response.choices[0].message.content
# if self.rate_limiter:
# while not self.rate_limiter.consume(1):
# print(f"Rate limit reached for task {task_id}. Waiting...")
# await asyncio.sleep(60 / 15) # Assuming 15 RPM
# # Include task_id in the task prompt to guide the agent
# task = (
# f"Answer the following question accurately and concisely: \n"
# f"{question} \n"
# f"If the question references an attachment, use tool to download it with task_id: {task_id}\n"
# f"Return the answer as a string."
# )
# print(f"Calling agent.run for task {task_id}...")
# response = await asyncio.to_thread(
# self.agent.run,
# task=task
# )
# print(f"Agent.run completed for task {task_id}.")
# response = str(response)
# if not response:
# print(f"No answer found for task {task_id}.")
# response = "No answer found."
# print(f"MagAgent response: {response[:50]}...")
# return response
except Exception as e:
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
print(error_msg)
return error_msg |