File size: 16,830 Bytes
93e7a8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0962002
 
 
93e7a8c
 
 
 
 
 
 
 
0962002
93e7a8c
0962002
93e7a8c
0962002
 
 
 
 
 
93e7a8c
 
 
 
 
 
0962002
93e7a8c
 
0962002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d50b0
 
 
 
 
 
 
0962002
d8d50b0
 
 
0962002
d8d50b0
0962002
d8d50b0
 
 
 
 
0962002
d8d50b0
 
0962002
d8d50b0
 
39f2438
 
 
 
 
 
 
 
 
 
 
 
d8d50b0
877a88b
 
 
d8d50b0
9752494
 
d8d50b0
 
877a88b
d8d50b0
 
 
877a88b
0962002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e7a8c
 
 
 
0962002
96187c5
0962002
b838851
3c4a95d
0962002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93e7a8c
0962002
 
93e7a8c
0962002
 
 
 
 
 
 
 
 
 
 
 
 
93e7a8c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
from smolagents import CodeAgent,  LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
import asyncio
import os
import re
import pandas as pd
from typing import Optional
from token_bucket import Limiter, MemoryStorage
import yaml
from PIL import Image, ImageOps
import requests
from io import BytesIO
from markdownify import markdownify
import whisper

import time
import shutil
import traceback


@tool
def GoogleSearchTool(query: str) -> str:
    """Tool for performing Google searches using Custom Search JSON API
    Args:
        query (str): Search query string
    Returns:
        str: Formatted search results
    """
    cse_id = os.environ.get("GOOGLE_CSE_ID")
    if not api_key or not cse_id:
        raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
    url = "https://www.googleapis.com/customsearch/v1"
    params = {
        "key": api_key,
        "cx": cse_id,
        "q": query,
        "num": 5  # Number of results to return
    }
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()
        results = response.json().get("items", [])
        return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
    except Exception as e:
        return f"Error performing Google search: {str(e)}"

#@tool

#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
#    """Tool for analyzing images mentioned in the question.
#    Args:
#        question (str): The question text which may contain an image URL.
#    Returns:
#        str: Image description or error message.
#    """
#    # Extract URL from question using regex
#    url_pattern = r'https?://\S+'
#
#    match = re.search(url_pattern, question)
#    if not match:
#        return "No image URL found in the question."
#    image_url = match.group(0)
#
#    headers = {
#        "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
#    }
#    try:
#        response = requests.get(image_url, headers=headers)

#        response.raise_for_status()
#        image = Image.open(BytesIO(response.content)).convert("RGB")
#    except Exception as e:
#        return f"Error fetching image: {e}"
#
#    agent = CodeAgent(
#        tools=[],
#        model=model,
#        max_steps=10,
#        verbosity_level=2
#    )
#
#    response = agent.run(
#        "Describe in details the chess position you see in the image.",
#        images=[image]
#    )
#    
#    return f"The image description: '{response}'"


            
class MagAgent:
    def __init__(self, rate_limiter: Optional[Limiter] = None):
        """Initialize the MagAgent with search tools."""
        self.rate_limiter = rate_limiter

        print("Initializing MagAgent with search tools...")
#        model = LiteLLMModel(
#            model_id="gemini/gemini-2.0-flash-preview-image-generation",
#            api_key= os.environ.get("GEMINI_KEY"),
#            max_tokens=8192
#        )

        self.model = LiteLLMModel(
            model_id="gemini/gemini-1.5-flash",
            api_key=os.environ.get("GEMINI_KEY"),
            api_base="https://generativelanguage.googleapis.com/v1beta",
            max_tokens=2048
        )
        
        # Initialize core tools
        self.download_tool = self.DownloadTaskAttachmentTool(rate_limiter=rate_limiter)
        self.chess_engine = self.ChessEngineTool()

        # Load prompt templates
        with open("prompts.yaml", 'r') as stream:
            prompt_templates = yaml.safe_load(stream)

        # Initialize rate limiter for DuckDuckGoSearchTool
        search_rate_limiter = Limiter(rate=30/60, capacity=30, storage=MemoryStorage()) if not rate_limiter else rate_limiter
        
        # Configure agent
        self.agent = CodeAgent(
            model=self.model,
            tools=[
                self.download_tool,
                self.chess_engine,
                self.SpeechToTextTool(),
                self.ExcelReaderTool(),
                self.VisitWebpageTool(),
                self.PythonCodeReaderTool()
            ],
            verbosity_level=2,
            prompt_templates=prompt_templates,
            add_base_tools=True,
            max_steps=15
        )

        print("MagAgent initialized.")


    class VisitWebpageTool(Tool):
        name = "visit_webpage"
        description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
        inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
        output_type = "string"
    
        def forward(self, url: str) -> str:
            try:
                response = requests.get(url, timeout=20)
                response.raise_for_status()
                markdown_content = markdownify(response.text).strip()
                markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
                from smolagents.utils import truncate_content
                return truncate_content(markdown_content, 10000)
            except requests.exceptions.Timeout:
                return "The request timed out. Please try again later or check the URL."
            except requests.exceptions.RequestException as e:
                return f"Error fetching the webpage: {str(e)}"
            except Exception as e:
                return f"An unexpected error occurred: {str(e)}"
    
        def __init__(self, *args, **kwargs):
            self.is_initialized = False
    
    class DownloadTaskAttachmentTool(Tool):
        name = "download_file"
        description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
        inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
        output_type = "string"
        DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
    
        def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
            self.is_initialized = False
            self.rate_limiter = rate_limiter
            self.default_api_url = default_api_url
    
        def forward(self, task_id: str) -> str:
            file_url = f"{self.default_api_url}/files/{task_id}"
            print(f"Downloading file for task ID {task_id} from {file_url}...")
            try:
                if self.rate_limiter:
                    while not self.rate_limiter.consume(1):
                        print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
                        time.sleep(60 / 15)  # Assuming 15 RPM
                response = requests.get(file_url, stream=True, timeout=15)
                response.raise_for_status()
                
                # Determine file extension based on Content-Type
                content_type = response.headers.get('Content-Type', '').lower()
                if 'image/png' in content_type:
                    extension = '.png'
                elif 'image/jpeg' in content_type:
                    extension = '.jpg'
                elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
                    extension = '.xlsx'
                elif 'audio/mpeg' in content_type:
                    extension = '.mp3'
                elif 'application/pdf' in content_type:
                    extension = '.pdf'
                elif 'text/x-python' in content_type:
                    extension = '.py'
                else:
                    return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
                
                local_file_path = f"downloads/{task_id}{extension}"
                os.makedirs("downloads", exist_ok=True)
                with open(local_file_path, "wb") as file:
                    for chunk in response.iter_content(chunk_size=8192):
                        file.write(chunk)
                print(f"File downloaded successfully: {local_file_path}")
                return local_file_path
            except requests.exceptions.HTTPError as e:
                if e.response.status_code == 429:
                    return f"Error: Rate limit exceeded for task {task_id}. Try again later."
                return f"Error downloading file for task {task_id}: {str(e)}"
            except requests.exceptions.RequestException as e:
                return f"Error downloading file for task {task_id}: {str(e)}"
    
    class SpeechToTextTool(Tool):
        name = "speech_to_text"
        description = (
            "Converts an audio file to text using OpenAI Whisper."
        )
        inputs = {
            "audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
        }
        output_type = "string"
    
        def __init__(self):
            super().__init__()
            self.model = whisper.load_model("base")
    
        def forward(self, audio_path: str) -> str:
            if not os.path.exists(audio_path):
                return f"Error: File not found at {audio_path}"
            result = self.model.transcribe(audio_path)
            return result.get("text", "")
    
    class ExcelReaderTool(Tool):
        name = "excel_reader"
    
        description = """
        This tool reads and processes Excel files (.xlsx, .xls).
        It can extract data, calculate statistics, and perform data analysis on spreadsheets.
        """
        inputs = {
            "excel_path": {
                "type": "string"
    ,
                "description": "The path to the Excel file to read",
            },
            "sheet_name": {
                "type": "string",
    
                "description": "The name of the sheet to read (optional, defaults to first sheet)",
                "nullable": True
            }
        }
        output_type = "string"
        
        def forward(self, excel_path: str, sheet_name: str = None) -> str:
            """
            Reads and processes the given Excel file.
            """
            try:
                # Check if the file exists
                if not os.path.exists(excel_path):
                    return f"Error: Excel file not found at {excel_path}"
                    
                import pandas as pd
                
                # Read the Excel file
                if sheet_name:
                    df = pd.read_excel(excel_path, sheet_name=sheet_name)
                else:
                    df = pd.read_excel(excel_path)
                    
                # Get basic info about the data
                info = {
                    "shape": df.shape,
                    "columns": list(df.columns),
                    "dtypes": df.dtypes.to_dict(),
                    "head": df.head(5).to_dict()
                }
                
                # Return formatted info
                result = f"Excel file: {excel_path}\n"
                result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
                result += "Columns:\n"
                for col in info['columns']:
                    result += f"- {col} ({info['dtypes'].get(col)})\n"
                
                result += "\nPreview (first 5 rows):\n"
                result += df.head(5).to_string()
                
                return result
                
            except Exception as e:
                return f"Error reading Excel file: {str(e)}"
    
    
    
    
    class DownloadImageTool(Tool):
        name = "download_chess_image"
        description = "Downloads chess position image from task ID"
        inputs = {'task_id': {'type': 'string'}}
        output_type = "string"

        def forward(self, task_id: str) -> str:
            try:
                response = requests.get(
                    f"https://agents-course-unit4-scoring.hf.space/files/{task_id}",
                    stream=True
                )
                response.raise_for_status()
                
                img_path = f"chess_{task_id}.png"
                with open(img_path, "wb") as f:
                    for chunk in response.iter_content(8192):
                        f.write(chunk)
                return img_path
            except Exception as e:
                raise RuntimeError(f"Image download failed: {str(e)}")

    
    class ChessEngineTool(Tool):
        name = "stockfish_analysis"
        description = "Analyzes chess position using Stockfish and returns best move"
        inputs = {
            "fen": {
                "type": "string",
                "description": "FEN string of the current chess position"
            },
            "time_limit": {
                "type": "number",
                "description": "Analysis time in seconds",
                "nullable": True
            }
        }
        output_type = "string"
    
        def forward(self, fen: str, time_limit: float = 0.1) -> str:  # Add time_limit parameter
            """Analyzes chess position using Stockfish engine"""
            try:
                import chess
                import chess.engine
                board = chess.Board(fen)
                engine = chess.engine.SimpleEngine.popen_uci("stockfish")
                result = engine.play(board, chess.engine.Limit(time=time_limit))  # Use parameter
                engine.quit()
                return board.san(result.move)
            except Exception as e:
                return f"Engine error: {str(e)}"    
            
    class PythonCodeReaderTool(Tool):
        name = "read_python_code"
        description = "Reads a Python (.py) file and returns its content as a string."
        inputs = {
            "file_path": {"type": "string", "description": "The path to the Python file to read"}
        }
        output_type = "string"
    
        def forward(self, file_path: str) -> str:
            try:
                if not os.path.exists(file_path):
                    return f"Error: Python file not found at {file_path}"
                with open(file_path, "r", encoding="utf-8") as file:
                    content = file.read()
                return content
            except Exception as e:
                return f"Error reading Python file: {str(e)}"

    
    async def __call__(self, question: str, task_id: str) -> str:
        """Process a question asynchronously using the MagAgent."""
        print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
        try:
            # Unified processing flow
            img_path = self.download_tool(task_id)
            
            response = await asyncio.to_thread(
                self.model,
                messages=[{
                    "role": "user",
                    "content": [
                        {"type": "text", "text": f"{question}\nProvide answer in algebraic notation."},
                        {"type": "image_url", "image_url": {"url": f"file://{img_path}"}}
                    ]
                }],
                temperature=0.1
            )
            
            return response.choices[0].message.content
            
            
            
#            if self.rate_limiter:
#                while not self.rate_limiter.consume(1):
#                    print(f"Rate limit reached for task {task_id}. Waiting...")
#                    await asyncio.sleep(60 / 15)  # Assuming 15 RPM
#            # Include task_id in the task prompt to guide the agent
#            task = (
#                f"Answer the following question accurately and concisely: \n"
#                f"{question} \n"
#                f"If the question references an attachment, use tool to download it with task_id: {task_id}\n"
#                f"Return the answer as a string."
#            )
#            print(f"Calling agent.run for task {task_id}...")
#            response = await asyncio.to_thread(
#                self.agent.run,
#                task=task
#            )
#            print(f"Agent.run completed for task {task_id}.")
#            response = str(response)
#            if not response:
#                print(f"No answer found for task {task_id}.")
#                response = "No answer found."
#            print(f"MagAgent response: {response[:50]}...")
#            return response
        except Exception as e:
            error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
            print(error_msg)
            return error_msg