Spaces:
Running
Running
Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from smolagents import CodeAgent, LiteLLMModel, tool, Tool, load_tool, DuckDuckGoSearchTool, WikipediaSearchTool #, HfApiModel, OpenAIServerModel
|
2 |
+
import asyncio
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import pandas as pd
|
6 |
+
from typing import Optional
|
7 |
+
from token_bucket import Limiter, MemoryStorage
|
8 |
+
import yaml
|
9 |
+
from PIL import Image, ImageOps
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
+
from markdownify import markdownify
|
13 |
+
import whisper
|
14 |
+
|
15 |
+
import time
|
16 |
+
import shutil
|
17 |
+
import traceback
|
18 |
+
|
19 |
+
|
20 |
+
@tool
|
21 |
+
def GoogleSearchTool(query: str) -> str:
|
22 |
+
"""Tool for performing Google searches using Custom Search JSON API
|
23 |
+
Args:
|
24 |
+
query (str): Search query string
|
25 |
+
Returns:
|
26 |
+
str: Formatted search results
|
27 |
+
"""
|
28 |
+
cse_id = os.environ.get("GOOGLE_CSE_ID")
|
29 |
+
if not api_key or not cse_id:
|
30 |
+
raise ValueError("GOOGLE_API_KEY and GOOGLE_CSE_ID must be set in environment variables.")
|
31 |
+
url = "https://www.googleapis.com/customsearch/v1"
|
32 |
+
params = {
|
33 |
+
"key": api_key,
|
34 |
+
"cx": cse_id,
|
35 |
+
"q": query,
|
36 |
+
"num": 5 # Number of results to return
|
37 |
+
}
|
38 |
+
try:
|
39 |
+
response = requests.get(url, params=params)
|
40 |
+
response.raise_for_status()
|
41 |
+
results = response.json().get("items", [])
|
42 |
+
return "\n".join([f"{item['title']}: {item['link']}" for item in results]) or "No results found."
|
43 |
+
except Exception as e:
|
44 |
+
return f"Error performing Google search: {str(e)}"
|
45 |
+
|
46 |
+
#@tool
|
47 |
+
|
48 |
+
#def ImageAnalysisTool(question: str, model: LiteLLMModel) -> str:
|
49 |
+
# """Tool for analyzing images mentioned in the question.
|
50 |
+
# Args:
|
51 |
+
# question (str): The question text which may contain an image URL.
|
52 |
+
# Returns:
|
53 |
+
# str: Image description or error message.
|
54 |
+
# """
|
55 |
+
# # Extract URL from question using regex
|
56 |
+
# url_pattern = r'https?://\S+'
|
57 |
+
#
|
58 |
+
# match = re.search(url_pattern, question)
|
59 |
+
# if not match:
|
60 |
+
# return "No image URL found in the question."
|
61 |
+
# image_url = match.group(0)
|
62 |
+
#
|
63 |
+
# headers = {
|
64 |
+
# "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36"
|
65 |
+
# }
|
66 |
+
# try:
|
67 |
+
# response = requests.get(image_url, headers=headers)
|
68 |
+
|
69 |
+
# response.raise_for_status()
|
70 |
+
# image = Image.open(BytesIO(response.content)).convert("RGB")
|
71 |
+
# except Exception as e:
|
72 |
+
# return f"Error fetching image: {e}"
|
73 |
+
#
|
74 |
+
# agent = CodeAgent(
|
75 |
+
# tools=[],
|
76 |
+
# model=model,
|
77 |
+
# max_steps=10,
|
78 |
+
# verbosity_level=2
|
79 |
+
# )
|
80 |
+
#
|
81 |
+
# response = agent.run(
|
82 |
+
# "Describe in details the chess position you see in the image.",
|
83 |
+
# images=[image]
|
84 |
+
# )
|
85 |
+
#
|
86 |
+
# return f"The image description: '{response}'"
|
87 |
+
|
88 |
+
class VisitWebpageTool(Tool):
|
89 |
+
name = "visit_webpage"
|
90 |
+
description = "Visits a webpage at the given url and reads its content as a markdown string. Use this to browse webpages."
|
91 |
+
inputs = {'url': {'type': 'string', 'description': 'The url of the webpage to visit.'}}
|
92 |
+
output_type = "string"
|
93 |
+
|
94 |
+
def forward(self, url: str) -> str:
|
95 |
+
try:
|
96 |
+
response = requests.get(url, timeout=20)
|
97 |
+
response.raise_for_status()
|
98 |
+
markdown_content = markdownify(response.text).strip()
|
99 |
+
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
100 |
+
from smolagents.utils import truncate_content
|
101 |
+
return truncate_content(markdown_content, 10000)
|
102 |
+
except requests.exceptions.Timeout:
|
103 |
+
return "The request timed out. Please try again later or check the URL."
|
104 |
+
except requests.exceptions.RequestException as e:
|
105 |
+
return f"Error fetching the webpage: {str(e)}"
|
106 |
+
except Exception as e:
|
107 |
+
return f"An unexpected error occurred: {str(e)}"
|
108 |
+
|
109 |
+
def __init__(self, *args, **kwargs):
|
110 |
+
self.is_initialized = False
|
111 |
+
|
112 |
+
class DownloadTaskAttachmentTool(Tool):
|
113 |
+
name = "download_file"
|
114 |
+
description = "Downloads the file attached to the task ID and returns the local file path. Supports Excel (.xlsx), image (.png, .jpg), audio (.mp3), PDF (.pdf), and Python (.py) files."
|
115 |
+
inputs = {'task_id': {'type': 'string', 'description': 'The task id to download attachment from.'}}
|
116 |
+
output_type = "string"
|
117 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
118 |
+
|
119 |
+
def __init__(self, rate_limiter: Optional[Limiter] = None, default_api_url: str = DEFAULT_API_URL, *args, **kwargs):
|
120 |
+
self.is_initialized = False
|
121 |
+
self.rate_limiter = rate_limiter
|
122 |
+
self.default_api_url = default_api_url
|
123 |
+
|
124 |
+
def forward(self, task_id: str) -> str:
|
125 |
+
file_url = f"{self.default_api_url}/files/{task_id}"
|
126 |
+
print(f"Downloading file for task ID {task_id} from {file_url}...")
|
127 |
+
try:
|
128 |
+
if self.rate_limiter:
|
129 |
+
while not self.rate_limiter.consume(1):
|
130 |
+
print(f"Rate limit reached for downloading file for task {task_id}. Waiting...")
|
131 |
+
time.sleep(60 / 15) # Assuming 15 RPM
|
132 |
+
response = requests.get(file_url, stream=True, timeout=15)
|
133 |
+
response.raise_for_status()
|
134 |
+
|
135 |
+
# Determine file extension based on Content-Type
|
136 |
+
content_type = response.headers.get('Content-Type', '').lower()
|
137 |
+
if 'image/png' in content_type:
|
138 |
+
extension = '.png'
|
139 |
+
elif 'image/jpeg' in content_type:
|
140 |
+
extension = '.jpg'
|
141 |
+
elif 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' in content_type:
|
142 |
+
extension = '.xlsx'
|
143 |
+
elif 'audio/mpeg' in content_type:
|
144 |
+
extension = '.mp3'
|
145 |
+
elif 'application/pdf' in content_type:
|
146 |
+
extension = '.pdf'
|
147 |
+
elif 'text/x-python' in content_type:
|
148 |
+
extension = '.py'
|
149 |
+
else:
|
150 |
+
return f"Error: Unsupported file type {content_type} for task {task_id}. Try using visit_webpage or web_search if the content is online."
|
151 |
+
|
152 |
+
local_file_path = f"downloads/{task_id}{extension}"
|
153 |
+
os.makedirs("downloads", exist_ok=True)
|
154 |
+
with open(local_file_path, "wb") as file:
|
155 |
+
for chunk in response.iter_content(chunk_size=8192):
|
156 |
+
file.write(chunk)
|
157 |
+
print(f"File downloaded successfully: {local_file_path}")
|
158 |
+
return local_file_path
|
159 |
+
except requests.exceptions.HTTPError as e:
|
160 |
+
if e.response.status_code == 429:
|
161 |
+
return f"Error: Rate limit exceeded for task {task_id}. Try again later."
|
162 |
+
return f"Error downloading file for task {task_id}: {str(e)}"
|
163 |
+
except requests.exceptions.RequestException as e:
|
164 |
+
return f"Error downloading file for task {task_id}: {str(e)}"
|
165 |
+
|
166 |
+
class SpeechToTextTool(Tool):
|
167 |
+
name = "speech_to_text"
|
168 |
+
description = (
|
169 |
+
"Converts an audio file to text using OpenAI Whisper."
|
170 |
+
)
|
171 |
+
inputs = {
|
172 |
+
"audio_path": {"type": "string", "description": "Path to audio file (.mp3, .wav)"},
|
173 |
+
}
|
174 |
+
output_type = "string"
|
175 |
+
|
176 |
+
def __init__(self):
|
177 |
+
super().__init__()
|
178 |
+
self.model = whisper.load_model("base")
|
179 |
+
|
180 |
+
def forward(self, audio_path: str) -> str:
|
181 |
+
if not os.path.exists(audio_path):
|
182 |
+
return f"Error: File not found at {audio_path}"
|
183 |
+
result = self.model.transcribe(audio_path)
|
184 |
+
return result.get("text", "")
|
185 |
+
|
186 |
+
class ExcelReaderTool(Tool):
|
187 |
+
name = "excel_reader"
|
188 |
+
|
189 |
+
description = """
|
190 |
+
This tool reads and processes Excel files (.xlsx, .xls).
|
191 |
+
It can extract data, calculate statistics, and perform data analysis on spreadsheets.
|
192 |
+
"""
|
193 |
+
inputs = {
|
194 |
+
"excel_path": {
|
195 |
+
"type": "string"
|
196 |
+
,
|
197 |
+
"description": "The path to the Excel file to read",
|
198 |
+
},
|
199 |
+
"sheet_name": {
|
200 |
+
"type": "string",
|
201 |
+
|
202 |
+
"description": "The name of the sheet to read (optional, defaults to first sheet)",
|
203 |
+
"nullable": True
|
204 |
+
}
|
205 |
+
}
|
206 |
+
output_type = "string"
|
207 |
+
|
208 |
+
def forward(self, excel_path: str, sheet_name: str = None) -> str:
|
209 |
+
"""
|
210 |
+
Reads and processes the given Excel file.
|
211 |
+
"""
|
212 |
+
try:
|
213 |
+
# Check if the file exists
|
214 |
+
if not os.path.exists(excel_path):
|
215 |
+
return f"Error: Excel file not found at {excel_path}"
|
216 |
+
|
217 |
+
import pandas as pd
|
218 |
+
|
219 |
+
# Read the Excel file
|
220 |
+
if sheet_name:
|
221 |
+
df = pd.read_excel(excel_path, sheet_name=sheet_name)
|
222 |
+
else:
|
223 |
+
df = pd.read_excel(excel_path)
|
224 |
+
|
225 |
+
# Get basic info about the data
|
226 |
+
info = {
|
227 |
+
"shape": df.shape,
|
228 |
+
"columns": list(df.columns),
|
229 |
+
"dtypes": df.dtypes.to_dict(),
|
230 |
+
"head": df.head(5).to_dict()
|
231 |
+
}
|
232 |
+
|
233 |
+
# Return formatted info
|
234 |
+
result = f"Excel file: {excel_path}\n"
|
235 |
+
result += f"Shape: {info['shape'][0]} rows × {info['shape'][1]} columns\n\n"
|
236 |
+
result += "Columns:\n"
|
237 |
+
for col in info['columns']:
|
238 |
+
result += f"- {col} ({info['dtypes'].get(col)})\n"
|
239 |
+
|
240 |
+
result += "\nPreview (first 5 rows):\n"
|
241 |
+
result += df.head(5).to_string()
|
242 |
+
|
243 |
+
return result
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
return f"Error reading Excel file: {str(e)}"
|
247 |
+
|
248 |
+
|
249 |
+
|
250 |
+
|
251 |
+
class DownloadImageTool(Tool):
|
252 |
+
name = "download_chess_image"
|
253 |
+
description = "Downloads chess position image from task ID"
|
254 |
+
inputs = {'task_id': {'type': 'string'}}
|
255 |
+
output_type = "string"
|
256 |
+
|
257 |
+
def forward(self, task_id: str) -> str:
|
258 |
+
try:
|
259 |
+
response = requests.get(
|
260 |
+
f"https://agents-course-unit4-scoring.hf.space/files/{task_id}",
|
261 |
+
stream=True
|
262 |
+
)
|
263 |
+
response.raise_for_status()
|
264 |
+
|
265 |
+
img_path = f"chess_{task_id}.png"
|
266 |
+
with open(img_path, "wb") as f:
|
267 |
+
for chunk in response.iter_content(8192):
|
268 |
+
f.write(chunk)
|
269 |
+
return img_path
|
270 |
+
except Exception as e:
|
271 |
+
raise RuntimeError(f"Image download failed: {str(e)}")
|
272 |
+
|
273 |
+
|
274 |
+
|
275 |
+
class ChessEngineTool(Tool):
|
276 |
+
import chess
|
277 |
+
import chess.engine
|
278 |
+
name = "stockfish_analysis"
|
279 |
+
description = "Analyzes chess position using Stockfish"
|
280 |
+
inputs = {'fen': {'type': 'string'}}
|
281 |
+
output_type = "string"
|
282 |
+
|
283 |
+
def forward(self, fen: str) -> str:
|
284 |
+
try:
|
285 |
+
board = chess.Board(fen)
|
286 |
+
engine = chess.engine.SimpleEngine.popen_uci("stockfish")
|
287 |
+
result = engine.play(board, chess.engine.Limit(time=2.0))
|
288 |
+
engine.quit()
|
289 |
+
return board.san(result.move)
|
290 |
+
except Exception as e:
|
291 |
+
return f"Engine error: {str(e)}"
|
292 |
+
|
293 |
+
async def analyze_position(self, task_id: str):
|
294 |
+
try:
|
295 |
+
# Step 1: Download image
|
296 |
+
img_path = await self.tools[0](task_id)
|
297 |
+
|
298 |
+
# Step 2: Get multimodal analysis
|
299 |
+
response = await self.model.acreate(
|
300 |
+
messages=[{
|
301 |
+
"role": "user",
|
302 |
+
"content": [
|
303 |
+
{"type": "text", "text": """Analyze this chess position.
|
304 |
+
It's black's turn. Provide the winning move in algebraic notation.
|
305 |
+
Respond ONLY with the move, nothing else."""},
|
306 |
+
{"type": "image_url", "image_url": {"url": f"file://{img_path}"}}
|
307 |
+
]
|
308 |
+
}],
|
309 |
+
temperature=0.1
|
310 |
+
)
|
311 |
+
|
312 |
+
return response.choices[0].message.content
|
313 |
+
|
314 |
+
except Exception as e:
|
315 |
+
return f"Analysis failed: {str(e)}"
|
316 |
+
|
317 |
+
|
318 |
+
|
319 |
+
|
320 |
+
class PythonCodeReaderTool(Tool):
|
321 |
+
name = "read_python_code"
|
322 |
+
description = "Reads a Python (.py) file and returns its content as a string."
|
323 |
+
inputs = {
|
324 |
+
"file_path": {"type": "string", "description": "The path to the Python file to read"}
|
325 |
+
}
|
326 |
+
output_type = "string"
|
327 |
+
|
328 |
+
def forward(self, file_path: str) -> str:
|
329 |
+
try:
|
330 |
+
if not os.path.exists(file_path):
|
331 |
+
return f"Error: Python file not found at {file_path}"
|
332 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
333 |
+
content = file.read()
|
334 |
+
return content
|
335 |
+
except Exception as e:
|
336 |
+
return f"Error reading Python file: {str(e)}"
|
337 |
+
|
338 |
+
class MagAgent:
|
339 |
+
def __init__(self, rate_limiter: Optional[Limiter] = None):
|
340 |
+
"""Initialize the MagAgent with search tools."""
|
341 |
+
self.rate_limiter = rate_limiter
|
342 |
+
|
343 |
+
print("Initializing MagAgent with search tools...")
|
344 |
+
# model = LiteLLMModel(
|
345 |
+
# model_id="gemini/gemini-2.0-flash-preview-image-generation",
|
346 |
+
# api_key= os.environ.get("GEMINI_KEY"),
|
347 |
+
# max_tokens=8192
|
348 |
+
# )
|
349 |
+
|
350 |
+
self.model = LiteLLMModel(
|
351 |
+
model_id="gemini/gemini-1.5-flash",
|
352 |
+
api_key=os.environ.get("GEMINI_KEY"),
|
353 |
+
api_base="https://generativelanguage.googleapis.com/v1beta",
|
354 |
+
max_tokens=2048
|
355 |
+
)
|
356 |
+
|
357 |
+
self.tools = [
|
358 |
+
self.DownloadImageTool(),
|
359 |
+
self.ChessEngineTool()
|
360 |
+
]
|
361 |
+
|
362 |
+
|
363 |
+
# Load prompt templates
|
364 |
+
with open("prompts.yaml", 'r') as stream:
|
365 |
+
prompt_templates = yaml.safe_load(stream)
|
366 |
+
|
367 |
+
# Initialize rate limiter for DuckDuckGoSearchTool
|
368 |
+
search_rate_limiter = Limiter(rate=30/60, capacity=30, storage=MemoryStorage()) if not rate_limiter else rate_limiter
|
369 |
+
|
370 |
+
self.agent = CodeAgent(
|
371 |
+
model= model,
|
372 |
+
tools=[
|
373 |
+
DownloadTaskAttachmentTool(rate_limiter=rate_limiter),
|
374 |
+
# DuckDuckGoSearchTool(),
|
375 |
+
# WikipediaSearchTool(),
|
376 |
+
SpeechToTextTool(),
|
377 |
+
ExcelReaderTool(),
|
378 |
+
VisitWebpageTool(),
|
379 |
+
PythonCodeReaderTool(),
|
380 |
+
PNG2FENTool,
|
381 |
+
ChessEngineTool(),
|
382 |
+
# GoogleSearchTool,
|
383 |
+
# ImageAnalysisTool,
|
384 |
+
],
|
385 |
+
verbosity_level=2,
|
386 |
+
prompt_templates=prompt_templates,
|
387 |
+
add_base_tools=True,
|
388 |
+
max_steps=15
|
389 |
+
)
|
390 |
+
print("MagAgent initialized.")
|
391 |
+
|
392 |
+
async def __call__(self, question: str, task_id: str) -> str:
|
393 |
+
"""Process a question asynchronously using the MagAgent."""
|
394 |
+
print(f"MagAgent received question (first 50 chars): {question[:50]}... Task ID: {task_id}")
|
395 |
+
try:
|
396 |
+
if self.rate_limiter:
|
397 |
+
while not self.rate_limiter.consume(1):
|
398 |
+
print(f"Rate limit reached for task {task_id}. Waiting...")
|
399 |
+
await asyncio.sleep(60 / 15) # Assuming 15 RPM
|
400 |
+
# Include task_id in the task prompt to guide the agent
|
401 |
+
task = (
|
402 |
+
# f"Answer the following question accurately and concisely: \n"
|
403 |
+
f"{question} \n"
|
404 |
+
f"If the question references an attachment, use tool to download it with task_id: {task_id}\n"
|
405 |
+
# f"Return the answer as a string."
|
406 |
+
)
|
407 |
+
print(f"Calling agent.run for task {task_id}...")
|
408 |
+
response = await asyncio.to_thread(
|
409 |
+
self.agent.run,
|
410 |
+
task=task
|
411 |
+
)
|
412 |
+
print(f"Agent.run completed for task {task_id}.")
|
413 |
+
response = str(response)
|
414 |
+
if not response:
|
415 |
+
print(f"No answer found for task {task_id}.")
|
416 |
+
response = "No answer found."
|
417 |
+
print(f"MagAgent response: {response[:50]}...")
|
418 |
+
return response
|
419 |
+
except Exception as e:
|
420 |
+
error_msg = f"Error processing question for task {task_id}: {str(e)}. Check API key or network connectivity."
|
421 |
+
print(error_msg)
|
422 |
+
return error_msg
|