Spaces:
Sleeping
Sleeping
import asyncio | |
from llama_index.core import Document | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.core.ingestion import IngestionPipeline | |
from llama_index.core import SimpleDirectoryReader | |
reader = SimpleDirectoryReader(input_dir=r"C:\Users\so7\AppData\Local\Programs\Python\Python313\RAG") | |
documents = reader.load_data() | |
# create the pipeline with transformations | |
pipeline = IngestionPipeline( | |
transformations=[ | |
SentenceSplitter(chunk_overlap=0), | |
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
] | |
) | |
# Define an async function to handle the pipeline | |
async def main(): | |
# Create the pipeline with transformations | |
pipeline = IngestionPipeline( | |
transformations=[ | |
SentenceSplitter(chunk_overlap=0), | |
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
] | |
) | |
# Use await inside the async function | |
nodes = | |
await pipeline.arun(documents=[Document.example()]) | |
# Optional: Do something with the nodes (e.g., print them) | |
print(nodes) | |
# Run the async function using asyncio | |
if __name__ == "__main__": | |
asyncio.run(main()) | |
import chromadb | |
from llama_index.vector_stores.chroma import ChromaVectorStore | |
from llama_index.core.ingestion import IngestionPipeline | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
db = chromadb.PersistentClient(path="./pl_db") | |
chroma_collection = db.get_or_create_collection("ppgpl") | |
vector_store = ChromaVectorStore(chroma_collection=chroma_collection) | |
pipeline = IngestionPipeline( | |
transformations=[ | |
SentenceSplitter(chunk_size=25, chunk_overlap=0), | |
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"), | |
], | |
vector_store=vector_store, | |
) | |
from llama_index.core import VectorStoreIndex | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") | |
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model) | |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI | |
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct") | |
query_engine = index.as_query_engine( | |
llm=llm, | |
response_mode="tree_summarize", | |
) | |
query_engine.query("Солнце на третей ступени") | |
# The meaning of life is 42 |