Spaces:
Sleeping
Sleeping
Create app1.py
Browse files
app1.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
from llama_index.core import Document
|
3 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
4 |
+
from llama_index.core.node_parser import SentenceSplitter
|
5 |
+
from llama_index.core.ingestion import IngestionPipeline
|
6 |
+
from llama_index.core import SimpleDirectoryReader
|
7 |
+
|
8 |
+
reader = SimpleDirectoryReader(input_dir=r"C:\Users\so7\AppData\Local\Programs\Python\Python313\RAG")
|
9 |
+
documents = reader.load_data()
|
10 |
+
|
11 |
+
# create the pipeline with transformations
|
12 |
+
pipeline = IngestionPipeline(
|
13 |
+
transformations=[
|
14 |
+
SentenceSplitter(chunk_overlap=0),
|
15 |
+
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
16 |
+
]
|
17 |
+
)
|
18 |
+
|
19 |
+
# Define an async function to handle the pipeline
|
20 |
+
async def main():
|
21 |
+
# Create the pipeline with transformations
|
22 |
+
pipeline = IngestionPipeline(
|
23 |
+
transformations=[
|
24 |
+
SentenceSplitter(chunk_overlap=0),
|
25 |
+
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
26 |
+
]
|
27 |
+
)
|
28 |
+
# Use await inside the async function
|
29 |
+
nodes =
|
30 |
+
await pipeline.arun(documents=[Document.example()])
|
31 |
+
# Optional: Do something with the nodes (e.g., print them)
|
32 |
+
print(nodes)
|
33 |
+
|
34 |
+
# Run the async function using asyncio
|
35 |
+
if __name__ == "__main__":
|
36 |
+
asyncio.run(main())
|
37 |
+
|
38 |
+
import chromadb
|
39 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
40 |
+
from llama_index.core.ingestion import IngestionPipeline
|
41 |
+
from llama_index.core.node_parser import SentenceSplitter
|
42 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
43 |
+
|
44 |
+
db = chromadb.PersistentClient(path="./pl_db")
|
45 |
+
chroma_collection = db.get_or_create_collection("ppgpl")
|
46 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
47 |
+
|
48 |
+
pipeline = IngestionPipeline(
|
49 |
+
transformations=[
|
50 |
+
SentenceSplitter(chunk_size=25, chunk_overlap=0),
|
51 |
+
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
52 |
+
],
|
53 |
+
vector_store=vector_store,
|
54 |
+
)
|
55 |
+
|
56 |
+
|
57 |
+
from llama_index.core import VectorStoreIndex
|
58 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
59 |
+
|
60 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
61 |
+
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
62 |
+
|
63 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
64 |
+
|
65 |
+
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
66 |
+
query_engine = index.as_query_engine(
|
67 |
+
llm=llm,
|
68 |
+
response_mode="tree_summarize",
|
69 |
+
)
|
70 |
+
query_engine.query("Солнце на третей ступени")
|
71 |
+
# The meaning of life is 42
|