Cain / app.py
Sephfox's picture
Update app.py
3ac5a66 verified
raw
history blame
11.8 kB
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer, pipeline
from deap import base, creator, tools, algorithms
import gc
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Emotions Dataset
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Lazy loading for the fine-tuned language model (FLAN-T5)
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None
def get_finetuned_lm_model():
global _finetuned_lm_tokenizer, _finetuned_lm_model
if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
_finetuned_lm_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
_finetuned_lm_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", low_cpu_mem_usage=True)
return _finetuned_lm_tokenizer, _finetuned_lm_model
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
def evaluate(individual):
emotion_values = individual[:len(emotions) - 1]
intensities = individual[-21:-1]
ideal_state = individual[-1]
ideal_diff = abs(100 - ideal_state)
sum_non_ideal = sum(emotion_values)
intensity_range = max(intensities) - min(intensities)
return ideal_diff, sum_non_ideal, intensity_range
def evolve_emotions():
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * len(emotions) +
(lambda: 100,), n(toolbox.attr_intensity,) * len(emotions) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions) - 1]
intensities = best_individual[-21:-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(emotions):
emotions[emotion]['percentage'] = emotion_values[i]
emotions[emotion]['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
def predict_emotion(context):
emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
predictions = emotion_prediction_pipeline(context)
emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
predicted_emotion = max(emotion_scores, key=emotion_scores.get)
# Map the predicted emotion to our emotion categories
emotion_mapping = {
'sadness': 'sadness',
'joy': 'joy',
'love': 'pleasure',
'anger': 'anger',
'fear': 'fear',
'surprise': 'surprise'
}
return emotion_mapping.get(predicted_emotion, 'neutral')
def generate_text(prompt, chat_history, emotion=None, max_length=100):
finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
# Prepare the input by concatenating the chat history and the new prompt
full_prompt = "You are Adam, an AI assistant. Respond to the following conversation in a natural and engaging way, considering the emotion: " + emotion + "\n\n"
for turn in chat_history[-5:]: # Consider last 5 turns for context
full_prompt += f"Human: {turn[0]}\nAdam: {turn[1]}\n"
full_prompt += f"Human: {prompt}\nAdam:"
input_ids = finetuned_lm_tokenizer(full_prompt, return_tensors="pt", max_length=512, truncation=True).input_ids
if torch.cuda.is_available():
input_ids = input_ids.cuda()
finetuned_lm_model = finetuned_lm_model.cuda()
# Generate the response
outputs = finetuned_lm_model.generate(
input_ids,
max_length=max_length + input_ids.shape[1],
num_return_sequences=1,
no_repeat_ngram_size=2,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
generated_text = finetuned_lm_tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text.strip()
def update_emotion_history(emotion, intensity):
global emotion_history
emotion_history.append({
'emotion': emotion,
'intensity': intensity,
'timestamp': pd.Timestamp.now().isoformat()
})
save_historical_data(emotion_history)
def get_dominant_emotion():
return max(emotions, key=lambda x: emotions[x]['percentage'] if x != 'ideal_state' else 0)
def get_emotion_summary():
summary = []
for emotion, data in emotions.items():
if emotion != 'ideal_state':
summary.append(f"{emotion.capitalize()}: {data['percentage']:.1f}% (Intensity: {data['intensity']:.1f})")
return "\n".join(summary)
def reset_emotions():
global emotions
for emotion in emotions:
if emotion != 'ideal_state':
emotions[emotion]['percentage'] = 10
emotions[emotion]['intensity'] = 0
emotions['ideal_state']['percentage'] = 100
return get_emotion_summary()
def respond_to_user(user_input, chat_history):
# Predict the emotion from the user input
predicted_emotion = predict_emotion(user_input)
# Ensure the predicted emotion exists in our emotions dictionary
if predicted_emotion not in emotions:
predicted_emotion = 'neutral'
# Update the emotional state
update_emotion(predicted_emotion, 5, random.uniform(0, 10))
# Get the current dominant emotion
dominant_emotion = get_dominant_emotion()
# Generate a response considering the dominant emotion
response = generate_text(user_input, chat_history, dominant_emotion)
# Update emotion history
update_emotion_history(predicted_emotion, emotions[predicted_emotion]['intensity'])
# Update chat history
chat_history.append((user_input, response))
# Evolve emotions periodically (e.g., every 10 interactions)
if len(chat_history) % 10 == 0:
evolve_emotions()
return response, chat_history, get_emotion_summary()
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Adam: Emotion-Aware AI Chatbot")
gr.Markdown("Chat with Adam, an AI that understands and responds to emotions.")
chatbot = gr.Chatbot()
msg = gr.Textbox(label="Type your message here...")
clear = gr.Button("Clear")
emotion_state = gr.Textbox(label="Current Emotional State", lines=10)
reset_button = gr.Button("Reset Emotions")
def user(user_message, history):
response, updated_history, emotion_summary = respond_to_user(user_message, history)
return "", updated_history, emotion_summary
msg.submit(user, [msg, chatbot], [msg, chatbot, emotion_state])
clear.click(lambda: None, None, chatbot, queue=False)
reset_button.click(reset_emotions, None, emotion_state, queue=False)
if __name__ == "__main__":
demo.launch()