File size: 11,829 Bytes
5b50796
 
 
 
 
 
 
 
26bca4f
5b50796
 
3ac5a66
20e25d2
5b50796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88945ca
 
 
 
5b50796
 
 
 
aaf362d
0241af2
 
5b50796
33e1c48
88945ca
 
60ae9bc
88945ca
 
 
33e1c48
 
88945ca
5b50796
 
 
 
 
 
 
 
449f6f5
5b50796
 
 
20e25d2
5b50796
 
 
 
 
 
 
 
 
ff1fffe
 
5b50796
ff1fffe
5b50796
ff6946f
a403423
 
 
 
 
 
 
 
 
 
 
a6dbe30
 
e6344ec
a403423
 
e6344ec
a403423
 
 
 
 
 
 
 
12380c1
 
 
 
 
 
 
 
 
 
60ae9bc
a6dbe30
12380c1
e6344ec
4b172ec
a403423
e6344ec
 
 
12380c1
 
33e1c48
6148fb4
ff1fffe
449f6f5
20e25d2
e6344ec
53f69b8
 
 
60ae9bc
 
4b172ec
a403423
60ae9bc
53f69b8
 
 
 
 
 
 
 
 
aaf362d
26bca4f
aaf362d
efc1ae9
0241af2
ff1fffe
0241af2
ff1fffe
0241af2
 
 
 
 
 
ff1fffe
 
0241af2
aaf362d
27a0681
0f6ffbd
27a0681
33e1c48
 
27a0681
33e1c48
 
27a0681
33e1c48
12380c1
0f6ffbd
 
 
 
12380c1
33e1c48
12380c1
33e1c48
0f6ffbd
12380c1
 
33e1c48
 
 
0f6ffbd
 
33e1c48
 
b7412b9
ff1fffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0241af2
ff1fffe
12380c1
 
ff1fffe
 
 
 
 
12380c1
 
ff1fffe
12380c1
ff1fffe
 
 
 
ff63280
ff1fffe
 
 
12380c1
 
 
 
ff1fffe
 
 
 
 
 
12380c1
0241af2
33e1c48
 
0241af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12380c1
 
0241af2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, T5ForConditionalGeneration, T5Tokenizer, pipeline
from deap import base, creator, tools, algorithms
import gc

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")

# Lazy loading for the fine-tuned language model (FLAN-T5)
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None

def get_finetuned_lm_model():
    global _finetuned_lm_tokenizer, _finetuned_lm_model
    if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
        _finetuned_lm_tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
        _finetuned_lm_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base", device_map="auto", low_cpu_mem_usage=True)
    return _finetuned_lm_tokenizer, _finetuned_lm_model

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
    'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0}
}

total_percentage = 200
emotion_history_file = 'emotion_history.json'

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

def normalize_context(context):
    return context.lower().strip()

def evaluate(individual):
    emotion_values = individual[:len(emotions) - 1]
    intensities = individual[-21:-1]
    ideal_state = individual[-1]
    
    ideal_diff = abs(100 - ideal_state)
    sum_non_ideal = sum(emotion_values)
    intensity_range = max(intensities) - min(intensities)
    
    return ideal_diff, sum_non_ideal, intensity_range

def evolve_emotions():
    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) +
                     (toolbox.attr_intensity,) * len(emotions) +
                     (lambda: 100,), n(toolbox.attr_intensity,) * len(emotions) +
                     (lambda: 100,), n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
                               stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions) - 1]
    intensities = best_individual[-21:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        emotions[emotion]['percentage'] = emotion_values[i]
        emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state

def predict_emotion(context):
    emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
    predictions = emotion_prediction_pipeline(context)
    emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
    predicted_emotion = max(emotion_scores, key=emotion_scores.get)
    
    # Map the predicted emotion to our emotion categories
    emotion_mapping = {
        'sadness': 'sadness',
        'joy': 'joy',
        'love': 'pleasure',
        'anger': 'anger',
        'fear': 'fear',
        'surprise': 'surprise'
    }
    
    return emotion_mapping.get(predicted_emotion, 'neutral')

def generate_text(prompt, chat_history, emotion=None, max_length=100):
    finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
    
    # Prepare the input by concatenating the chat history and the new prompt
    full_prompt = "You are Adam, an AI assistant. Respond to the following conversation in a natural and engaging way, considering the emotion: " + emotion + "\n\n"
    for turn in chat_history[-5:]:  # Consider last 5 turns for context
        full_prompt += f"Human: {turn[0]}\nAdam: {turn[1]}\n"
    full_prompt += f"Human: {prompt}\nAdam:"
    
    input_ids = finetuned_lm_tokenizer(full_prompt, return_tensors="pt", max_length=512, truncation=True).input_ids
    
    if torch.cuda.is_available():
        input_ids = input_ids.cuda()
        finetuned_lm_model = finetuned_lm_model.cuda()

    # Generate the response
    outputs = finetuned_lm_model.generate(
        input_ids,
        max_length=max_length + input_ids.shape[1],
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        do_sample=True,
        temperature=0.7,
        top_k=50,
        top_p=0.95
    )

    generated_text = finetuned_lm_tokenizer.decode(outputs[0], skip_special_tokens=True)
    return generated_text.strip()

def update_emotion_history(emotion, intensity):
    global emotion_history
    emotion_history.append({
        'emotion': emotion,
        'intensity': intensity,
        'timestamp': pd.Timestamp.now().isoformat()
    })
    save_historical_data(emotion_history)

def get_dominant_emotion():
    return max(emotions, key=lambda x: emotions[x]['percentage'] if x != 'ideal_state' else 0)

def get_emotion_summary():
    summary = []
    for emotion, data in emotions.items():
        if emotion != 'ideal_state':
            summary.append(f"{emotion.capitalize()}: {data['percentage']:.1f}% (Intensity: {data['intensity']:.1f})")
    return "\n".join(summary)

def reset_emotions():
    global emotions
    for emotion in emotions:
        if emotion != 'ideal_state':
            emotions[emotion]['percentage'] = 10
            emotions[emotion]['intensity'] = 0
    emotions['ideal_state']['percentage'] = 100
    return get_emotion_summary()

def respond_to_user(user_input, chat_history):
    # Predict the emotion from the user input
    predicted_emotion = predict_emotion(user_input)
    
    # Ensure the predicted emotion exists in our emotions dictionary
    if predicted_emotion not in emotions:
        predicted_emotion = 'neutral'
    
    # Update the emotional state
    update_emotion(predicted_emotion, 5, random.uniform(0, 10))
    
    # Get the current dominant emotion
    dominant_emotion = get_dominant_emotion()
    
    # Generate a response considering the dominant emotion
    response = generate_text(user_input, chat_history, dominant_emotion)
    
    # Update emotion history
    update_emotion_history(predicted_emotion, emotions[predicted_emotion]['intensity'])
    
    # Update chat history
    chat_history.append((user_input, response))
    
    # Evolve emotions periodically (e.g., every 10 interactions)
    if len(chat_history) % 10 == 0:
        evolve_emotions()
    
    return response, chat_history, get_emotion_summary()

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Adam: Emotion-Aware AI Chatbot")
    gr.Markdown("Chat with Adam, an AI that understands and responds to emotions.")
    
    chatbot = gr.Chatbot()
    msg = gr.Textbox(label="Type your message here...")
    clear = gr.Button("Clear")
    
    emotion_state = gr.Textbox(label="Current Emotional State", lines=10)
    reset_button = gr.Button("Reset Emotions")
    
    def user(user_message, history):
        response, updated_history, emotion_summary = respond_to_user(user_message, history)
        return "", updated_history, emotion_summary
    
    msg.submit(user, [msg, chatbot], [msg, chatbot, emotion_state])
    clear.click(lambda: None, None, chatbot, queue=False)
    reset_button.click(reset_emotions, None, emotion_state, queue=False)

if __name__ == "__main__":
    demo.launch()