Spaces:
Sleeping
Sleeping
import streamlit as st | |
import torch | |
from transformers import AutoTokenizer | |
from semviqa.ser.qatc_model import QATCForQuestionAnswering | |
from semviqa.tvc.model import ClaimModelForClassification | |
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc | |
from semviqa.tvc.tvc_eval import classify_claim | |
# Load models with caching | |
def load_model(model_name, model_class, is_bc=False): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2) | |
model.eval() | |
return tokenizer, model | |
# Page Configuration | |
st.set_page_config(page_title="SemViQA Demo", layout="wide") | |
# Custom CSS for improved UI | |
st.markdown(""" | |
<style> | |
body { | |
font-family: 'Arial', sans-serif; | |
} | |
.big-title { | |
font-size: 36px; | |
font-weight: bold; | |
color: #0078D4; | |
text-align: center; | |
margin-top: 20px; | |
} | |
.sub-title { | |
font-size: 20px; | |
color: #666; | |
text-align: center; | |
margin-bottom: 20px; | |
} | |
.stButton>button { | |
background-color: #4CAF50; | |
color: white; | |
font-size: 16px; | |
width: 100%; | |
border-radius: 8px; | |
padding: 10px; | |
transition: 0.3s; | |
} | |
.stButton>button:hover { | |
background-color: #45a049; | |
} | |
.result-box { | |
background-color: #f9f9f9; | |
padding: 20px; | |
border-radius: 10px; | |
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); | |
margin-top: 20px; | |
} | |
.verdict { | |
font-size: 24px; | |
font-weight: bold; | |
display: flex; | |
align-items: center; | |
} | |
.verdict-icon { | |
margin-right: 10px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Page Header | |
st.markdown("<p class='big-title'>SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True) | |
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True) | |
# Sidebar: Settings | |
with st.sidebar.expander("⚙️ Settings", expanded=True): | |
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01) | |
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01) | |
qatc_model_name = st.selectbox("QATC Model", [ | |
"SemViQA/qatc-infoxlm-viwikifc", | |
"SemViQA/qatc-infoxlm-isedsc01", | |
"SemViQA/qatc-vimrc-viwikifc", | |
"SemViQA/qatc-vimrc-isedsc01" | |
]) | |
bc_model_name = st.selectbox("Binary Classification Model", [ | |
"SemViQA/bc-xlmr-viwikifc", | |
"SemViQA/bc-xlmr-isedsc01", | |
"SemViQA/bc-infoxlm-viwikifc", | |
"SemViQA/bc-infoxlm-isedsc01", | |
"SemViQA/bc-erniem-viwikifc", | |
"SemViQA/bc-erniem-isedsc01" | |
]) | |
tc_model_name = st.selectbox("Three-Class Classification Model", [ | |
"SemViQA/tc-xlmr-viwikifc", | |
"SemViQA/tc-xlmr-isedsc01", | |
"SemViQA/tc-infoxlm-viwikifc", | |
"SemViQA/tc-infoxlm-isedsc01", | |
"SemViQA/tc-erniem-viwikifc", | |
"SemViQA/tc-erniem-isedsc01" | |
]) | |
show_details = st.checkbox("Show probability details", value=False) | |
# Load Models | |
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering) | |
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True) | |
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification) | |
# Define verdict icons | |
verdict_icons = { | |
"SUPPORTED": "✅", | |
"REFUTED": "❌", | |
"NEI": "⚠️" | |
} | |
# Tabs for functionalities | |
tabs = st.tabs(["Verify", "History", "About"]) | |
# --- Verify Tab --- | |
with tabs[0]: | |
st.subheader("Verify a Claim") | |
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.") | |
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia.") | |
if st.button("Verify", key="verify_button"): | |
with st.spinner("Verifying..."): | |
with torch.no_grad(): | |
evidence = extract_evidence_tfidf_qatc( | |
claim, context, model_qatc, tokenizer_qatc, | |
"cuda" if torch.cuda.is_available() else "cpu", | |
confidence_threshold=tfidf_threshold, | |
length_ratio_threshold=length_ratio_threshold | |
) | |
verdict = "NEI" | |
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu") | |
if pred_tc != 0: | |
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu") | |
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc] | |
# Display result | |
st.markdown(f""" | |
<div class='result-box'> | |
<h3>Result</h3> | |
<p><strong>Evidence:</strong> {evidence}</p> | |
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(verdict, '')}</span>{verdict}</p> | |
</div> | |
""", unsafe_allow_html=True) | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
# --- About Tab --- | |
with tabs[2]: | |
st.subheader("About SemViQA") | |
st.markdown("""SemViQA is a semantic fact-checking system for Vietnamese information verification.""") | |