semviqa-demo / app.py
xuandin's picture
Update app.py
35de67c verified
raw
history blame
5.7 kB
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
return tokenizer, model
# Page Configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS for improved UI
st.markdown("""
<style>
body {
font-family: 'Arial', sans-serif;
}
.big-title {
font-size: 36px;
font-weight: bold;
color: #0078D4;
text-align: center;
margin-top: 20px;
}
.sub-title {
font-size: 20px;
color: #666;
text-align: center;
margin-bottom: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
</style>
""", unsafe_allow_html=True)
# Page Header
st.markdown("<p class='big-title'>SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar: Settings
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("Three-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show probability details", value=False)
# Load Models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# Define verdict icons
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Tabs for functionalities
tabs = st.tabs(["Verify", "History", "About"])
# --- Verify Tab ---
with tabs[0]:
st.subheader("Verify a Claim")
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia.")
if st.button("Verify", key="verify_button"):
with st.spinner("Verifying..."):
with torch.no_grad():
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
"cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
verdict = "NEI"
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
if pred_tc != 0:
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
# Display result
st.markdown(f"""
<div class='result-box'>
<h3>Result</h3>
<p><strong>Evidence:</strong> {evidence}</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(verdict, '')}</span>{verdict}</p>
</div>
""", unsafe_allow_html=True)
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- About Tab ---
with tabs[2]:
st.subheader("About SemViQA")
st.markdown("""SemViQA is a semantic fact-checking system for Vietnamese information verification.""")