Spaces:
Sleeping
Sleeping
File size: 5,704 Bytes
f4d5aab ee53ecb f4d5aab ee53ecb 35de67c f4d5aab 35de67c f4d5aab 35de67c f4d5aab 35de67c 77dabd4 35de67c 77dabd4 35de67c 77dabd4 35de67c 77dabd4 f4d5aab 35de67c f4d5aab 35de67c 77dabd4 f4d5aab 35de67c f4d5aab ee53ecb f4d5aab 35de67c 77dabd4 35de67c f4d5aab 35de67c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
# Load models with caching
@st.cache_resource()
def load_model(model_name, model_class, is_bc=False):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
return tokenizer, model
# Page Configuration
st.set_page_config(page_title="SemViQA Demo", layout="wide")
# Custom CSS for improved UI
st.markdown("""
<style>
body {
font-family: 'Arial', sans-serif;
}
.big-title {
font-size: 36px;
font-weight: bold;
color: #0078D4;
text-align: center;
margin-top: 20px;
}
.sub-title {
font-size: 20px;
color: #666;
text-align: center;
margin-bottom: 20px;
}
.stButton>button {
background-color: #4CAF50;
color: white;
font-size: 16px;
width: 100%;
border-radius: 8px;
padding: 10px;
transition: 0.3s;
}
.stButton>button:hover {
background-color: #45a049;
}
.result-box {
background-color: #f9f9f9;
padding: 20px;
border-radius: 10px;
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
margin-top: 20px;
}
.verdict {
font-size: 24px;
font-weight: bold;
display: flex;
align-items: center;
}
.verdict-icon {
margin-right: 10px;
}
</style>
""", unsafe_allow_html=True)
# Page Header
st.markdown("<p class='big-title'>SemViQA: Vietnamese Fact-Checking System</p>", unsafe_allow_html=True)
st.markdown("<p class='sub-title'>Enter a claim and context to verify its accuracy</p>", unsafe_allow_html=True)
# Sidebar: Settings
with st.sidebar.expander("⚙️ Settings", expanded=True):
tfidf_threshold = st.slider("TF-IDF Threshold", 0.0, 1.0, 0.5, 0.01)
length_ratio_threshold = st.slider("Length Ratio Threshold", 0.1, 1.0, 0.5, 0.01)
qatc_model_name = st.selectbox("QATC Model", [
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
])
bc_model_name = st.selectbox("Binary Classification Model", [
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
])
tc_model_name = st.selectbox("Three-Class Classification Model", [
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
])
show_details = st.checkbox("Show probability details", value=False)
# Load Models
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification)
# Define verdict icons
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# Tabs for functionalities
tabs = st.tabs(["Verify", "History", "About"])
# --- Verify Tab ---
with tabs[0]:
st.subheader("Verify a Claim")
claim = st.text_area("Enter Claim", "Vietnam is a country in Southeast Asia.")
context = st.text_area("Enter Context", "Vietnam is a country located in Southeast Asia.")
if st.button("Verify", key="verify_button"):
with st.spinner("Verifying..."):
with torch.no_grad():
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
"cuda" if torch.cuda.is_available() else "cpu",
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
verdict = "NEI"
prob3class, pred_tc = classify_claim(claim, evidence, model_tc, tokenizer_tc, "cuda" if torch.cuda.is_available() else "cpu")
if pred_tc != 0:
prob2class, pred_bc = classify_claim(claim, evidence, model_bc, tokenizer_bc, "cuda" if torch.cuda.is_available() else "cpu")
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
# Display result
st.markdown(f"""
<div class='result-box'>
<h3>Result</h3>
<p><strong>Evidence:</strong> {evidence}</p>
<p class='verdict'><span class='verdict-icon'>{verdict_icons.get(verdict, '')}</span>{verdict}</p>
</div>
""", unsafe_allow_html=True)
if torch.cuda.is_available():
torch.cuda.empty_cache()
# --- About Tab ---
with tabs[2]:
st.subheader("About SemViQA")
st.markdown("""SemViQA is a semantic fact-checking system for Vietnamese information verification.""")
|