File size: 23,207 Bytes
f4d5aab
 
 
 
 
 
 
65d40d5
 
7725101
 
 
0be0916
 
 
 
 
f4d5aab
7725101
 
 
0be0916
7725101
042e3b2
 
 
0be0916
 
 
 
 
 
 
 
 
 
d7db16b
 
 
 
 
 
 
 
0be0916
 
 
 
 
d7db16b
 
 
0be0916
 
a486265
 
 
 
0be0916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a486265
0be0916
 
a486265
 
 
 
 
 
 
 
 
0be0916
 
 
a486265
 
c616050
0be0916
 
 
 
 
 
 
 
a486265
 
 
 
0be0916
a486265
 
 
 
 
 
 
 
 
 
 
 
 
0be0916
 
 
 
 
 
 
 
 
 
 
 
 
a486265
6fc23f1
 
c616050
6fc23f1
 
 
 
f4d5aab
6fc23f1
 
f4d5aab
6fc23f1
 
0be0916
 
6fc23f1
 
 
 
3f899a4
6fc23f1
 
 
 
 
3f899a4
6fc23f1
 
 
0be0916
6fc23f1
0be0916
 
6fc23f1
0be0916
6fc23f1
 
 
0be0916
 
3f899a4
6fc23f1
3f899a4
6fc23f1
3f899a4
0be0916
3f899a4
6fc23f1
3f899a4
6fc23f1
 
 
 
0be0916
 
 
6fc23f1
 
 
 
 
3f899a4
0be0916
6fc23f1
 
0be0916
 
 
 
6fc23f1
3f899a4
6fc23f1
 
 
0be0916
3f899a4
6fc23f1
 
3f899a4
6fc23f1
0be0916
 
 
 
4ab50fb
 
0be0916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f899a4
6fc23f1
3f899a4
0be0916
 
 
 
 
6fc23f1
3f899a4
6fc23f1
 
0be0916
 
3f899a4
6fc23f1
 
0be0916
 
3f899a4
6fc23f1
 
0be0916
 
3f899a4
6fc23f1
 
 
 
0be0916
 
 
3f899a4
6fc23f1
 
 
0be0916
 
 
 
 
4d37b8b
6fc23f1
 
be06814
0be0916
 
 
 
 
 
6fc23f1
 
 
 
 
 
 
 
 
0be0916
 
6fc23f1
 
 
 
4ab50fb
 
 
f4d5aab
6fc23f1
f4d5aab
0be0916
6fc23f1
 
 
c616050
6fc23f1
 
f0d09f3
0be0916
6fc23f1
c616050
6fc23f1
0be0916
c616050
6fc23f1
c616050
6fc23f1
8a052ba
 
 
 
6fc23f1
 
 
 
c616050
6fc23f1
12ccc3e
 
a48f89a
 
8a052ba
 
6fc23f1
 
 
 
c616050
6fc23f1
12ccc3e
 
a48f89a
 
8a052ba
 
6fc23f1
 
 
0be0916
c616050
6fc23f1
c616050
6fc23f1
c616050
6fc23f1
 
 
c616050
6fc23f1
c616050
6fc23f1
 
0be0916
c616050
6fc23f1
c616050
6fc23f1
c616050
6fc23f1
 
0be0916
c616050
6fc23f1
c616050
6fc23f1
 
c616050
6fc23f1
 
 
4d37b8b
6fc23f1
c616050
4d37b8b
d7db16b
 
 
 
7c117db
 
 
 
 
6fc23f1
 
 
 
 
c616050
6fc23f1
c616050
6fc23f1
c616050
6fc23f1
 
 
c616050
6fc23f1
c616050
6fc23f1
 
c616050
6fc23f1
 
c616050
6fc23f1
c616050
6fc23f1
99fbeb9
 
 
6fc23f1
 
0be0916
 
 
6fc23f1
 
0be0916
 
 
6fc23f1
 
 
 
 
 
 
 
 
 
0be0916
 
 
6fc23f1
 
 
69b5fd0
 
 
6fc23f1
ed692f5
 
 
 
6fc23f1
69b5fd0
0be0916
69b5fd0
 
0be0916
 
6fc23f1
69b5fd0
6fc23f1
0be0916
6fc23f1
 
 
 
 
 
 
 
 
 
0be0916
 
6fc23f1
 
 
 
 
 
 
0be0916
6fc23f1
 
 
 
 
 
 
69b5fd0
 
 
 
 
 
6fc23f1
 
c616050
 
 
6fc23f1
 
 
 
c616050
 
 
 
0be0916
 
 
69b5fd0
0be0916
4fdfda4
6fc23f1
 
 
 
0be0916
 
c616050
 
 
 
0be0916
c616050
0be0916
 
69b5fd0
0be0916
6fc23f1
c616050
6fc23f1
c616050
6fc23f1
 
8a052ba
c616050
6fc23f1
 
 
c616050
6fc23f1
 
0be0916
6fc23f1
c616050
6fc23f1
c616050
6fc23f1
 
 
0be0916
 
 
 
c616050
 
 
 
0be0916
 
6fc23f1
c616050
6fc23f1
 
0be0916
6fc23f1
c616050
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import pandas as pd
import os
import psutil
import gc
import numpy as np
from functools import lru_cache
import threading
from concurrent.futures import ThreadPoolExecutor
import torch.nn.functional as F

# Set environment variables to optimize CPU performance
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
torch.set_num_threads(psutil.cpu_count(logical=False))

# Set device globally
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"

# Cache for model outputs
@lru_cache(maxsize=1000)
def cached_classify_claim(claim, evidence, model_name, is_bc=False):
    tokenizer, model = load_model(model_name, ClaimModelForClassification, is_bc=is_bc, device=DEVICE)
    with torch.no_grad():
        prob, pred = classify_claim(claim, evidence, model, tokenizer, DEVICE)
    return prob, pred

# Optimized model loading with caching
@st.cache_resource(ttl=3600)  # Cache for 1 hour
def load_model(model_name, model_class, is_bc=False, device=None):
    if device is None:
        device = "cuda" if torch.cuda.is_available() else "cpu"
    
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
    model.eval()
    
    # Optimize model for inference
    if device == "cuda":
        model = model.half()  # Use FP16 for faster inference
        torch.cuda.empty_cache()
    
    model.to(device)
    return tokenizer, model

# Optimized text preprocessing
@st.cache_data(ttl=3600)
def preprocess_text(text):
    # Add any text cleaning or normalization here
    return text.strip()

# Batch processing for evidence extraction
def batch_extract_evidence(claims, contexts, model_qatc, tokenizer_qatc, batch_size=4):
    results = []
    for i in range(0, len(claims), batch_size):
        batch_claims = claims[i:i + batch_size]
        batch_contexts = contexts[i:i + batch_size]
        
        with torch.no_grad():
            batch_results = [
                extract_evidence_tfidf_qatc(
                    claim, context, model_qatc, tokenizer_qatc,
                    DEVICE,
                    confidence_threshold=0.5,
                    length_ratio_threshold=0.5
                )
                for claim, context in zip(batch_claims, batch_contexts)
            ]
        results.extend(batch_results)
    return results

# Optimized verification function with parallel processing
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc, 
                        model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
    # Extract evidence with optimized settings
    evidence_start_time = time.time()
    evidence = extract_evidence_tfidf_qatc(
        claim, context, model_qatc, tokenizer_qatc,
        DEVICE,
        confidence_threshold=tfidf_threshold,
        length_ratio_threshold=length_ratio_threshold
    )
    evidence_time = time.time() - evidence_start_time
    
    # Clear memory after evidence extraction
    if DEVICE == "cuda":
        torch.cuda.empty_cache()
    gc.collect()
    
    verdict_start_time = time.time()
    # Parallel classification using ThreadPoolExecutor
    with ThreadPoolExecutor(max_workers=2) as executor:
        future_tc = executor.submit(cached_classify_claim, claim, evidence, tc_model_name, False)
        future_bc = executor.submit(cached_classify_claim, claim, evidence, bc_model_name, True)
        
        prob3class, pred_tc = future_tc.result()
        prob2class, pred_bc = future_bc.result()
    
    with torch.no_grad():
        verdict = "NEI"
        if pred_tc != 0:
            verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
    
    verdict_time = time.time() - verdict_start_time

    return {
        "evidence": evidence,
        "verdict": verdict,
        "evidence_time": evidence_time,
        "verdict_time": verdict_time,
        "prob3class": prob3class.item() if isinstance(prob3class, torch.Tensor) else prob3class,
        "pred_tc": pred_tc,
        "prob2class": prob2class.item() if isinstance(prob2class, torch.Tensor) else prob2class,
        "pred_bc": pred_bc
    }

# Add performance monitoring
def monitor_performance():
    if DEVICE == "cuda":
        return {
            "gpu_memory_used": torch.cuda.memory_allocated() / 1024**2,
            "gpu_memory_cached": torch.cuda.memory_reserved() / 1024**2,
            "cpu_percent": psutil.cpu_percent(),
            "memory_percent": psutil.virtual_memory().percent
        }
    return {
        "cpu_percent": psutil.cpu_percent(),
        "memory_percent": psutil.virtual_memory().percent
    }

# Set page configuration
st.set_page_config(
    page_title="SemViQA - A Semantic Question Answering System for Vietnamese Information Fact-Checking",
    page_icon="🔍",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS
st.markdown("""
    <style>
    /* Main theme colors */
    :root {
        --primary-color: #1f77b4;
        --secondary-color: #2c3e50;
        --accent-color: #e74c3c;
        --background-color: #f8f9fa;
        --text-color: #2c3e50;
        --border-color: #e0e0e0;
    }
    
    /* General styling */
    .stApp {
        background-color: var(--background-color);
        color: var(--text-color);
    }
    
    /* Header styling */
    .main-header {
        background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
        color: white;
        padding: 2rem;
        border-radius: 10px;
        margin-bottom: 2rem;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    .main-title {
        font-size: 2.5rem;
        font-weight: bold;
        text-align: center;
        margin-bottom: 1rem;
    }
    
    .sub-title {
        font-size: 1.2rem;
        text-align: center;
        opacity: 0.9;
    }
    
    /* Input styling */
    .stTextArea textarea {
        border: 2px solid var(--border-color);
        border-radius: 8px;
        padding: 1rem;
        font-size: 1rem;
        min-height: 150px;
        background-color: white;
    }
    
    /* Button styling */
    .stButton>button {
        background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
        color: white;
        border: none;
        border-radius: 8px;
        padding: 0.8rem 2rem;
        font-size: 1.1rem;
        font-weight: bold;
        transition: all 0.3s ease;
    }
    
    .stButton>button:hover {
        transform: translateY(-2px);
        box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
    }
    
    /* Result box styling */
    .result-box {
        background-color: white;
        border-radius: 12px;
        padding: 2rem;
        margin: 1rem 0;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    /* Info section styling */
    .info-section {
        background-color: white;
        border-radius: 12px;
        padding: 2rem;
        margin: 1rem 0;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    .info-section h3 {
        color: var(--primary-color);
        font-size: 1.8rem;
        margin-bottom: 1.5rem;
        border-bottom: 2px solid var(--border-color);
        padding-bottom: 0.5rem;
    }
    
    .info-section h4 {
        color: var(--secondary-color);
        font-size: 1.4rem;
        margin: 1.5rem 0 1rem 0;
    }
    
    .info-section p {
        font-size: 1.1rem;
        line-height: 1.6;
        color: var(--text-color);
        margin-bottom: 1.5rem;
    }
    
    .info-section ol, .info-section ul {
        margin-left: 1.5rem;
        margin-bottom: 1.5rem;
    }
    
    .info-section li {
        font-size: 1.1rem;
        line-height: 1.6;
        margin-bottom: 0.5rem;
    }
    
    .info-section strong {
        color: var(--primary-color);
    }
    
    .verdict {
        font-size: 1.8rem;
        font-weight: bold;
        padding: 1rem;
        border-radius: 8px;
        margin: 1rem 0;
        text-align: center;
    }
    
    .verdict-supported {
        background-color: #d4edda;
        color: #155724;
    }
    
    .verdict-refuted {
        background-color: #f8d7da;
        color: #721c24;
    }
    
    .verdict-nei {
        background-color: #fff3cd;
        color: #856404;
    }
    
    /* Sidebar styling */
    .css-1d391kg {
        background-color: white;
        padding: 2rem;
        border-radius: 12px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    /* Stats box styling */
    .stats-box {
        background-color: white;
        border-radius: 8px;
        padding: 1rem;
        margin: 0.5rem 0;
        box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
    }
    
    /* Code block styling */
    .code-block {
        background-color: #f8f9fa;
        border: 1px solid var(--border-color);
        border-radius: 8px;
        padding: 1rem;
        font-family: monospace;
        margin: 1rem 0;
    }
    
    /* Tab styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 2rem;
    }
    
    .stTabs [data-baseweb="tab"] {
        background-color: white;
        border-radius: 8px;
        padding: 0.5rem 1rem;
        margin: 0 0.5rem;
    }
    
    .stTabs [aria-selected="true"] {
        background-color: var(--primary-color);
        color: white;
    }
    </style>
""", unsafe_allow_html=True)

# Main header
st.markdown("""
    <div class="main-header">
        <div class="main-title">SemViQA</div>
        <div class="sub-title">A Semantic Question Answering System for Vietnamese Information Fact-Checking</div>
    </div>
""", unsafe_allow_html=True)

# Sidebar
with st.sidebar:
    st.markdown("### ⚙️ System Settings")
    
    # Model selection
    st.markdown("#### 🧠 Model Selection")
    qatc_model_name = st.selectbox(
        "QATC Model",
        [
            "SemViQA/qatc-infoxlm-viwikifc",
            "SemViQA/qatc-infoxlm-isedsc01",
            "SemViQA/qatc-vimrc-viwikifc",
            "SemViQA/qatc-vimrc-isedsc01"
        ]
    )
    
    bc_model_name = st.selectbox(
        "Binary Classification Model",
        [
            "SemViQA/bc-xlmr-viwikifc",
            "SemViQA/bc-xlmr-isedsc01",
            "SemViQA/bc-infoxlm-viwikifc",
            "SemViQA/bc-infoxlm-isedsc01",
            "SemViQA/bc-erniem-viwikifc",
            "SemViQA/bc-erniem-isedsc01"
        ]
    )
    
    tc_model_name = st.selectbox(
        "Three-Class Classification Model",
        [
            "SemViQA/tc-xlmr-viwikifc",
            "SemViQA/tc-xlmr-isedsc01",
            "SemViQA/tc-infoxlm-viwikifc",
            "SemViQA/tc-infoxlm-isedsc01",
            "SemViQA/tc-erniem-viwikifc",
            "SemViQA/tc-erniem-isedsc01"
        ]
    )
    
    # Threshold settings
    st.markdown("#### ⚖️ Analysis Thresholds")
    tfidf_threshold = st.slider(
        "Confidence Threshold",
        0.0, 1.0, 0.5,
        help="Adjust sensitivity in evidence search"
    )
    
    length_ratio_threshold = st.slider(
        "Length Ratio Threshold",
        0.1, 1.0, 0.5,
        help="Adjust maximum evidence length"
    )
    
    # Display settings
    st.markdown("#### 👁️ Display")
    show_details = st.checkbox(
        "Show Probability Details",
        value=False,
        help="Display detailed probability information"
    )
    
    # Performance settings
    st.markdown("#### ⚡ Performance")
    num_threads = st.slider(
        "CPU Threads",
        1, psutil.cpu_count(),
        psutil.cpu_count(logical=False),
        help="Adjust processing performance"
    )
    os.environ["OMP_NUM_THREADS"] = str(num_threads)
    os.environ["MKL_NUM_THREADS"] = str(num_threads)

# Main content
tabs = st.tabs(["🔍 Verify", "📊 History", "ℹ️ Info"])

tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification, device=DEVICE)

verdict_icons = {
    "SUPPORTED": "✅",
    "REFUTED": "❌",
    "NEI": "⚠️"
}
# --- Tab Verify ---
with tabs[0]:
    col1, col2 = st.columns([2, 1])
    
    with col1:
        st.markdown("### 📝 Input Information")
        claim = st.text_area(
            "Claim to Verify",
            "Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất.",
            help="Enter the claim to be verified"
        )
        
        context = st.text_area(
            "Context",
            "Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng. Năm 1986, Đảng Cộng sản ban hành cải cách đổi mới, tạo điều kiện hình thành kinh tế thị trường và hội nhập sâu rộng. Cải cách đổi mới kết hợp cùng quy mô dân số lớn đưa Việt Nam trở thành một trong những nước đang phát triển có tốc độ tăng trưởng thuộc nhóm nhanh nhất thế giới, được coi là Hổ mới châu Á dù cho vẫn gặp phải những thách thức như tham nhũng, tội phạm gia tăng, ô nhiễm môi trường và phúc lợi xã hội chưa đầy đủ. Ngoài ra, giới bất đồng chính kiến, chính phủ một số nước phương Tây và các tổ chức theo dõi nhân quyền có quan điểm chỉ trích hồ sơ nhân quyền của Việt Nam liên quan đến các vấn đề tôn giáo, kiểm duyệt truyền thông, hạn chế hoạt động ủng hộ nhân quyền cùng các quyền tự do dân sự.",
            help="Enter context or reference text"
        )
        
        verify_button = st.button("🔍 Verify", use_container_width=True)
    
    with col2:
        st.markdown("### 📊 Results")
        if verify_button:
            with st.spinner("Verifying..."):
                # Preprocess texts
                preprocessed_claim = preprocess_text(claim)
                preprocessed_context = preprocess_text(context)
                
                # Clear memory and perform verification
                gc.collect()
                if DEVICE == "cuda":
                    torch.cuda.empty_cache()
                
                start_time = time.time()
                
                # Monitor initial performance
                initial_perf = monitor_performance()
                
                result = perform_verification(
                    preprocessed_claim, preprocessed_context,
                    model_qatc, tokenizer_qatc,
                    model_tc, tokenizer_tc,
                    model_bc, tokenizer_bc,
                    tfidf_threshold, length_ratio_threshold
                )
                
                total_time = time.time() - start_time
                
                # Monitor final performance
                final_perf = monitor_performance()
                
                # Format details
                details = ""
                if show_details:
                    gpu_memory_used = f"{float(final_perf.get('gpu_memory_used', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"
                    gpu_memory_cached = f"{float(final_perf.get('gpu_memory_cached', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"

                    details = f"""
                        Details:
                        - 3-Class Probability: {result['prob3class']:.2f}
                        - 3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
                        - 2-Class Probability: {result['prob2class']:.2f}
                        2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}

                        Performance Metrics:
                        - GPU Memory Used: {gpu_memory_used}
                        - GPU Memory Cached: {gpu_memory_cached}
                        - CPU Usage: {final_perf['cpu_percent']}%
                        - Memory Usage: {final_perf['memory_percent']}%
                    """

                
                # Store result with performance metrics
                st.session_state.latest_result = {
                    "claim": claim,
                    "evidence": result['evidence'],
                    "verdict": result['verdict'],
                    "evidence_time": result['evidence_time'],
                    "verdict_time": result['verdict_time'],
                    "total_time": total_time,
                    "details": details,
                    "qatc_model": qatc_model_name,
                    "bc_model": bc_model_name,
                    "tc_model": tc_model_name,
                    "performance_metrics": final_perf
                }
                
                # Add to history
                if 'history' not in st.session_state:
                    st.session_state.history = []
                st.session_state.history.append(st.session_state.latest_result)
                
                # Display result with performance metrics
                res = st.session_state.latest_result
                verdict_class = {
                    "SUPPORTED": "verdict-supported",
                    "REFUTED": "verdict-refuted",
                    "NEI": "verdict-nei"
                }.get(res['verdict'], "")
                
                gpu_memory_text = (
                    f"<li>GPU Memory: {float(res['performance_metrics'].get('gpu_memory_used', 0)):.2f} MB</li>"
                    if DEVICE == "cuda"
                    else "<li>GPU Memory: N/A</li>"
                )

                st.markdown(f"""
                    <div class="result-box">
                        <h3>Verification Results</h3>
                        <p><strong>Claim:</strong> {res['claim']}</p>
                        <p><strong>Evidence:</strong> {res['evidence']}</p>
                        <p class="verdict {verdict_class}">
                            {verdict_icons.get(res['verdict'], '')} {res['verdict']}
                        </p>
                        <div class="stats-box">
                            <p><strong>Evidence Extraction Time:</strong> {res['evidence_time']:.2f} seconds</p>
                            <p><strong>Classification Time:</strong> {res['verdict_time']:.2f} seconds</p>
                            <p><strong>Total Time:</strong> {res['total_time']:.2f} seconds</p>
                            <p><strong>Performance:</strong></p>
                            <ul>
                                <li>CPU: {res['performance_metrics']['cpu_percent']}%</li>
                                <li>RAM: {res['performance_metrics']['memory_percent']}%</li>
                                {gpu_memory_text}
                            </ul>
                        </div>
                        {f"<div class='code-block'><pre>{res['details']}</pre></div>" if show_details else ""}
                    </div>
                """, unsafe_allow_html=True)
                
                # Download button with performance metrics
                result_text = f"""
Claim: {res['claim']}
Evidence: {res['evidence']}
Verdict: {res['verdict']}
Details: {res['details']}

Performance:
- CPU: {res['performance_metrics']['cpu_percent']}%
- RAM: {res['performance_metrics']['memory_percent']}%
- GPU Memory: {f"{float(res['performance_metrics'].get('gpu_memory_used', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"}
"""
                st.download_button(
                    "📥 Download Results",
                    data=result_text,
                    file_name="verification_results.txt",
                    mime="text/plain"
                )
        else:
            st.info("Please enter information and click Verify to begin.")

# --- Tab History ---
with tabs[1]:
    st.markdown("### 📊 Verification History")
    if 'history' in st.session_state and st.session_state.history:
        # Download full history
        history_df = pd.DataFrame(st.session_state.history)
        st.download_button(
            "📥 Download Full History",
            data=history_df.to_csv(index=False).encode('utf-8'),
            file_name="verification_history.csv",
            mime="text/csv"
        )
        
        # Display history
        for idx, record in enumerate(reversed(st.session_state.history), 1):
            st.markdown(f"""
                <div class="result-box">
                    <h4>Verification #{idx}</h4>
                    <p><strong>Claim:</strong> {record['claim']}</p>
                    <p><strong>Verdict:</strong> {verdict_icons.get(record['verdict'], '')} {record['verdict']}</p>
                    <p><strong>Time:</strong> {record['total_time']:.2f} seconds</p>
                </div>
            """, unsafe_allow_html=True)
    else:
        st.info("No verification history available.")

# --- Tab Info ---
with tabs[2]:
    st.markdown("""
    ### ℹ️ About SemViQA 
**Author:** [**Nam V. Nguyen**](https://github.com/DAVID-NGUYEN-S16), [**Dien X. Tran**](https://github.com/xndien2004), Thanh T. Tran, Anh T. Hoang, Tai V. Duong, Di T. Le, Phuc-Lu Le 
             
SemViQA is a cutting-edge Vietnamese fact-checking system designed to combat misinformation. It leverages semantic-based evidence retrieval (SER) and a two-step verdict classification (TVC) approach to verify claims efficiently. By combining TF-IDF with a Question Answering Token Classifier (QATC), SemViQA improves accuracy while reducing inference time. Achieving state-of-the-art performance, it has set new benchmarks on ViWikiFC (80.82% accuracy) and ISE-DSC01 (78.97% accuracy) datasets. With its 7x speed boost, SemViQA is a powerful tool for ensuring information integrity in the Vietnamese language.

#### 🔍 How to Use  
1. Enter the claim to verify  
2. Enter context or reference text  
3. Adjust parameters in Settings if needed  
4. Click Verify button  

#### ⚙️ Parameters  
- **Confidence Threshold:** Adjust sensitivity in evidence search  
- **Length Ratio Threshold:** An important parameter in the evidence retrieval process. It determines how text segments are processed when compared to the length of the claim to be verified. 
- **CPU Threads:** Adjust processing performance  

#### 📊 Results  
- **SUPPORTED:** The claim is supported by evidence  
- **REFUTED:** The claim is refuted by evidence  
- **NEI:** Not enough information to conclude    
    """)