Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,18 +10,30 @@ import pandas as pd
|
|
10 |
import os
|
11 |
import psutil
|
12 |
import gc
|
13 |
-
import
|
14 |
-
|
15 |
-
|
|
|
|
|
16 |
|
17 |
# Set environment variables to optimize CPU performance
|
18 |
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
|
19 |
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
|
|
|
20 |
|
21 |
# Set device globally
|
22 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def load_model(model_name, model_class, is_bc=False, device=None):
|
26 |
if device is None:
|
27 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -30,18 +42,44 @@ def load_model(model_name, model_class, is_bc=False, device=None):
|
|
30 |
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
|
31 |
model.eval()
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
model.to(device)
|
34 |
return tokenizer, model
|
35 |
|
36 |
-
|
|
|
37 |
def preprocess_text(text):
|
38 |
# Add any text cleaning or normalization here
|
39 |
return text.strip()
|
40 |
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc,
|
43 |
-
|
44 |
-
# Extract evidence
|
45 |
evidence_start_time = time.time()
|
46 |
evidence = extract_evidence_tfidf_qatc(
|
47 |
claim, context, model_qatc, tokenizer_qatc,
|
@@ -51,25 +89,25 @@ def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, t
|
|
51 |
)
|
52 |
evidence_time = time.time() - evidence_start_time
|
53 |
|
54 |
-
#
|
|
|
|
|
55 |
gc.collect()
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
verdict_start_time = time.time()
|
59 |
with torch.no_grad():
|
60 |
verdict = "NEI"
|
61 |
-
prob3class, pred_tc = classify_claim(
|
62 |
-
claim, evidence, model_tc, tokenizer_tc, DEVICE
|
63 |
-
)
|
64 |
-
|
65 |
-
# Only run binary classifier if needed
|
66 |
-
prob2class, pred_bc = 0, 0
|
67 |
if pred_tc != 0:
|
68 |
-
prob2class, pred_bc = classify_claim(
|
69 |
-
claim, evidence, model_bc, tokenizer_bc, DEVICE
|
70 |
-
)
|
71 |
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
|
72 |
-
|
73 |
verdict_time = time.time() - verdict_start_time
|
74 |
|
75 |
return {
|
@@ -83,69 +121,19 @@ def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, t
|
|
83 |
"pred_bc": pred_bc
|
84 |
}
|
85 |
|
86 |
-
# Add
|
87 |
-
def
|
88 |
-
if
|
89 |
-
return
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
)
|
100 |
-
return fig
|
101 |
-
|
102 |
-
def analyze_processing_time(history):
|
103 |
-
if not history:
|
104 |
-
return None
|
105 |
-
|
106 |
-
df = pd.DataFrame(history)
|
107 |
-
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
108 |
-
|
109 |
-
fig = px.line(
|
110 |
-
df,
|
111 |
-
x='timestamp',
|
112 |
-
y=['evidence_time', 'verdict_time', 'total_time'],
|
113 |
-
title='Thời gian Xử lý theo Thời gian',
|
114 |
-
labels={'value': 'Thời gian (giây)', 'timestamp': 'Thời điểm'}
|
115 |
-
)
|
116 |
-
return fig
|
117 |
-
|
118 |
-
def generate_report(result):
|
119 |
-
report = f"""
|
120 |
-
BÁO CÁO KIỂM CHỨNG THÔNG TIN
|
121 |
-
Thời gian: {datetime.now().strftime('%d/%m/%Y %H:%M:%S')}
|
122 |
-
|
123 |
-
1. THÔNG TIN CƠ BẢN
|
124 |
-
-------------------
|
125 |
-
Câu khẳng định: {result['claim']}
|
126 |
-
Kết luận: {result['verdict']}
|
127 |
-
|
128 |
-
2. BẰNG CHỨNG
|
129 |
-
-------------
|
130 |
-
{result['evidence']}
|
131 |
-
|
132 |
-
3. THỐNG KÊ THỜI GIAN
|
133 |
-
---------------------
|
134 |
-
- Thời gian trích xuất bằng chứng: {result['evidence_time']:.2f} giây
|
135 |
-
- Thời gian phân loại: {result['verdict_time']:.2f} giây
|
136 |
-
- Tổng thời gian xử lý: {result['total_time']:.2f} giây
|
137 |
-
|
138 |
-
4. CHI TIẾT KỸ THUẬT
|
139 |
-
-------------------
|
140 |
-
{result['details']}
|
141 |
-
|
142 |
-
5. MÔ HÌNH SỬ DỤNG
|
143 |
-
------------------
|
144 |
-
- QATC Model: {result['qatc_model']}
|
145 |
-
- Binary Classification Model: {result['bc_model']}
|
146 |
-
- 3-Class Classification Model: {result['tc_model']}
|
147 |
-
"""
|
148 |
-
return report
|
149 |
|
150 |
# Set page configuration
|
151 |
st.set_page_config(
|
@@ -160,295 +148,195 @@ st.markdown("""
|
|
160 |
<style>
|
161 |
/* Main theme colors */
|
162 |
:root {
|
163 |
-
--primary-color: #
|
164 |
-
--secondary-color: #
|
165 |
--accent-color: #e74c3c;
|
166 |
-
--success-color: #2ecc71;
|
167 |
-
--warning-color: #f1c40f;
|
168 |
--background-color: #f8f9fa;
|
169 |
--text-color: #2c3e50;
|
170 |
--border-color: #e0e0e0;
|
171 |
-
--gradient-start: #2c3e50;
|
172 |
-
--gradient-end: #3498db;
|
173 |
}
|
174 |
|
175 |
/* General styling */
|
176 |
.stApp {
|
177 |
background-color: var(--background-color);
|
178 |
color: var(--text-color);
|
179 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
180 |
}
|
181 |
|
182 |
/* Header styling */
|
183 |
.main-header {
|
184 |
-
background: linear-gradient(135deg, var(--
|
185 |
color: white;
|
186 |
-
padding:
|
187 |
-
border-radius:
|
188 |
margin-bottom: 2rem;
|
189 |
-
box-shadow: 0
|
190 |
-
position: relative;
|
191 |
-
overflow: hidden;
|
192 |
-
}
|
193 |
-
|
194 |
-
.main-header::before {
|
195 |
-
content: '';
|
196 |
-
position: absolute;
|
197 |
-
top: 0;
|
198 |
-
left: 0;
|
199 |
-
right: 0;
|
200 |
-
bottom: 0;
|
201 |
-
background: url('data:image/svg+xml,<svg width="20" height="20" viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"><rect width="1" height="1" fill="rgba(255,255,255,0.05)"/></svg>');
|
202 |
-
opacity: 0.1;
|
203 |
}
|
204 |
|
205 |
.main-title {
|
206 |
-
font-size:
|
207 |
-
font-weight:
|
208 |
text-align: center;
|
209 |
margin-bottom: 1rem;
|
210 |
-
text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.2);
|
211 |
-
letter-spacing: 1px;
|
212 |
}
|
213 |
|
214 |
.sub-title {
|
215 |
-
font-size: 1.
|
216 |
text-align: center;
|
217 |
opacity: 0.9;
|
218 |
-
font-weight: 300;
|
219 |
}
|
220 |
|
221 |
/* Input styling */
|
222 |
.stTextArea textarea {
|
223 |
border: 2px solid var(--border-color);
|
224 |
-
border-radius:
|
225 |
-
padding:
|
226 |
-
font-size:
|
227 |
min-height: 150px;
|
228 |
background-color: white;
|
229 |
-
transition: all 0.3s ease;
|
230 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
231 |
-
}
|
232 |
-
|
233 |
-
.stTextArea textarea:focus {
|
234 |
-
border-color: var(--secondary-color);
|
235 |
-
box-shadow: 0 4px 8px rgba(52, 152, 219, 0.1);
|
236 |
}
|
237 |
|
238 |
/* Button styling */
|
239 |
.stButton>button {
|
240 |
-
background: linear-gradient(135deg, var(--
|
241 |
color: white;
|
242 |
border: none;
|
243 |
-
border-radius:
|
244 |
-
padding:
|
245 |
-
font-size: 1.
|
246 |
-
font-weight:
|
247 |
transition: all 0.3s ease;
|
248 |
-
text-transform: uppercase;
|
249 |
-
letter-spacing: 1px;
|
250 |
}
|
251 |
|
252 |
.stButton>button:hover {
|
253 |
transform: translateY(-2px);
|
254 |
-
box-shadow: 0 8px
|
255 |
}
|
256 |
|
257 |
/* Result box styling */
|
258 |
.result-box {
|
259 |
background-color: white;
|
260 |
-
border-radius:
|
261 |
-
padding:
|
262 |
-
margin:
|
263 |
-
box-shadow: 0
|
264 |
-
transition: all 0.3s ease;
|
265 |
-
border: 1px solid rgba(0, 0, 0, 0.05);
|
266 |
}
|
267 |
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
}
|
272 |
|
273 |
.verdict {
|
274 |
-
font-size:
|
275 |
-
font-weight:
|
276 |
-
padding:
|
277 |
-
border-radius:
|
278 |
-
margin:
|
279 |
text-align: center;
|
280 |
-
transition: all 0.3s ease;
|
281 |
}
|
282 |
|
283 |
.verdict-supported {
|
284 |
-
background:
|
285 |
-
color:
|
286 |
-
box-shadow: 0 4px 8px rgba(46, 204, 113, 0.2);
|
287 |
}
|
288 |
|
289 |
.verdict-refuted {
|
290 |
-
background:
|
291 |
-
color:
|
292 |
-
box-shadow: 0 4px 8px rgba(231, 76, 60, 0.2);
|
293 |
}
|
294 |
|
295 |
.verdict-nei {
|
296 |
-
background:
|
297 |
-
color:
|
298 |
-
box-shadow: 0 4px 8px rgba(241, 196, 15, 0.2);
|
299 |
}
|
300 |
|
301 |
/* Sidebar styling */
|
302 |
.css-1d391kg {
|
303 |
background-color: white;
|
304 |
-
padding:
|
305 |
-
border-radius:
|
306 |
-
box-shadow: 0
|
307 |
}
|
308 |
|
309 |
/* Stats box styling */
|
310 |
.stats-box {
|
311 |
-
background:
|
312 |
-
border-radius:
|
313 |
-
padding:
|
314 |
-
margin:
|
315 |
-
box-shadow: 0 4px
|
316 |
}
|
317 |
|
318 |
/* Code block styling */
|
319 |
.code-block {
|
320 |
-
background-color: #
|
321 |
-
border
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
overflow-x: auto;
|
327 |
}
|
328 |
|
329 |
/* Tab styling */
|
330 |
.stTabs [data-baseweb="tab-list"] {
|
331 |
gap: 2rem;
|
332 |
-
background-color: transparent;
|
333 |
}
|
334 |
|
335 |
.stTabs [data-baseweb="tab"] {
|
336 |
background-color: white;
|
337 |
-
border-radius:
|
338 |
-
padding: 0.
|
339 |
margin: 0 0.5rem;
|
340 |
-
font-weight: 600;
|
341 |
-
transition: all 0.3s ease;
|
342 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
343 |
}
|
344 |
|
345 |
.stTabs [aria-selected="true"] {
|
346 |
-
background: linear-gradient(135deg, var(--secondary-color), var(--primary-color));
|
347 |
-
color: white;
|
348 |
-
box-shadow: 0 4px 8px rgba(52, 152, 219, 0.2);
|
349 |
-
}
|
350 |
-
|
351 |
-
/* Analysis box styling */
|
352 |
-
.analysis-box {
|
353 |
-
background-color: white;
|
354 |
-
border-radius: 15px;
|
355 |
-
padding: 2rem;
|
356 |
-
margin: 1.5rem 0;
|
357 |
-
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
|
358 |
-
border-left: 4px solid var(--secondary-color);
|
359 |
-
}
|
360 |
-
|
361 |
-
/* Search box styling */
|
362 |
-
.search-box {
|
363 |
-
background-color: white;
|
364 |
-
border-radius: 12px;
|
365 |
-
padding: 1.5rem;
|
366 |
-
margin-bottom: 1.5rem;
|
367 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
|
368 |
-
}
|
369 |
-
|
370 |
-
/* Comparison box styling */
|
371 |
-
.comparison-box {
|
372 |
-
background-color: white;
|
373 |
-
border-radius: 15px;
|
374 |
-
padding: 2rem;
|
375 |
-
margin: 1.5rem 0;
|
376 |
-
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
|
377 |
-
border-left: 4px solid var(--secondary-color);
|
378 |
-
}
|
379 |
-
|
380 |
-
/* Selectbox styling */
|
381 |
-
.stSelectbox select {
|
382 |
-
border-radius: 8px;
|
383 |
-
padding: 0.8rem;
|
384 |
-
font-size: 1rem;
|
385 |
-
border: 2px solid var(--border-color);
|
386 |
-
background-color: white;
|
387 |
-
transition: all 0.3s ease;
|
388 |
-
}
|
389 |
-
|
390 |
-
.stSelectbox select:focus {
|
391 |
-
border-color: var(--secondary-color);
|
392 |
-
box-shadow: 0 4px 8px rgba(52, 152, 219, 0.1);
|
393 |
-
}
|
394 |
-
|
395 |
-
/* Slider styling */
|
396 |
-
.stSlider > div > div {
|
397 |
-
background-color: var(--secondary-color);
|
398 |
-
}
|
399 |
-
|
400 |
-
/* Checkbox styling */
|
401 |
-
.stCheckbox > label {
|
402 |
-
font-weight: 500;
|
403 |
-
}
|
404 |
-
|
405 |
-
/* Info box styling */
|
406 |
-
.info-box {
|
407 |
-
background: linear-gradient(135deg, #f8f9fa, #e9ecef);
|
408 |
-
border-radius: 15px;
|
409 |
-
padding: 2rem;
|
410 |
-
margin: 1.5rem 0;
|
411 |
-
box-shadow: 0 8px 16px rgba(0, 0, 0, 0.1);
|
412 |
-
}
|
413 |
-
|
414 |
-
/* Chart container styling */
|
415 |
-
.js-plotly-plot {
|
416 |
-
border-radius: 12px !important;
|
417 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05) !important;
|
418 |
-
}
|
419 |
-
|
420 |
-
/* Dataframe styling */
|
421 |
-
.dataframe {
|
422 |
-
border-radius: 12px;
|
423 |
-
overflow: hidden;
|
424 |
-
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.05);
|
425 |
-
}
|
426 |
-
|
427 |
-
.dataframe thead th {
|
428 |
background-color: var(--primary-color);
|
429 |
color: white;
|
430 |
}
|
431 |
-
|
432 |
-
/* Download button styling */
|
433 |
-
.stDownloadButton > button {
|
434 |
-
background: linear-gradient(135deg, var(--success-color), #27ae60);
|
435 |
-
color: white;
|
436 |
-
border: none;
|
437 |
-
border-radius: 12px;
|
438 |
-
padding: 0.8rem 2rem;
|
439 |
-
font-size: 1.1rem;
|
440 |
-
font-weight: 600;
|
441 |
-
transition: all 0.3s ease;
|
442 |
-
}
|
443 |
-
|
444 |
-
.stDownloadButton > button:hover {
|
445 |
-
transform: translateY(-2px);
|
446 |
-
box-shadow: 0 4px 8px rgba(46, 204, 113, 0.2);
|
447 |
-
}
|
448 |
</style>
|
449 |
""", unsafe_allow_html=True)
|
450 |
|
451 |
-
# Main header
|
452 |
st.markdown("""
|
453 |
<div class="main-header">
|
454 |
<div class="main-title">SemViQA</div>
|
@@ -456,15 +344,11 @@ st.markdown("""
|
|
456 |
</div>
|
457 |
""", unsafe_allow_html=True)
|
458 |
|
459 |
-
# Sidebar
|
460 |
with st.sidebar:
|
461 |
-
st.markdown(""
|
462 |
-
<div class="info-box">
|
463 |
-
<h3>⚙️ Cài đặt Hệ thống</h3>
|
464 |
-
</div>
|
465 |
-
""", unsafe_allow_html=True)
|
466 |
|
467 |
-
# Model selection
|
468 |
st.markdown("#### 🧠 Chọn Mô hình")
|
469 |
qatc_model_name = st.selectbox(
|
470 |
"Mô hình QATC",
|
@@ -500,7 +384,7 @@ with st.sidebar:
|
|
500 |
]
|
501 |
)
|
502 |
|
503 |
-
# Threshold settings
|
504 |
st.markdown("#### ⚖️ Ngưỡng Phân tích")
|
505 |
tfidf_threshold = st.slider(
|
506 |
"Ngưỡng TF-IDF",
|
@@ -514,7 +398,7 @@ with st.sidebar:
|
|
514 |
help="Điều chỉnh độ dài tối đa của bằng chứng"
|
515 |
)
|
516 |
|
517 |
-
# Display settings
|
518 |
st.markdown("#### 👁️ Hiển thị")
|
519 |
show_details = st.checkbox(
|
520 |
"Hiển thị Chi tiết Xác suất",
|
@@ -522,7 +406,7 @@ with st.sidebar:
|
|
522 |
help="Hiển thị thông tin chi tiết về xác suất dự đoán"
|
523 |
)
|
524 |
|
525 |
-
# Performance settings
|
526 |
st.markdown("#### ⚡ Hiệu suất")
|
527 |
num_threads = st.slider(
|
528 |
"Số luồng CPU",
|
@@ -534,7 +418,7 @@ with st.sidebar:
|
|
534 |
os.environ["MKL_NUM_THREADS"] = str(num_threads)
|
535 |
|
536 |
# Main content
|
537 |
-
tabs = st.tabs(["🔍 Kiểm chứng", "📊 Lịch sử", "
|
538 |
|
539 |
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
|
540 |
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
|
@@ -575,8 +459,14 @@ with tabs[0]:
|
|
575 |
|
576 |
# Clear memory and perform verification
|
577 |
gc.collect()
|
|
|
|
|
|
|
578 |
start_time = time.time()
|
579 |
|
|
|
|
|
|
|
580 |
result = perform_verification(
|
581 |
preprocessed_claim, preprocessed_context,
|
582 |
model_qatc, tokenizer_qatc,
|
@@ -587,6 +477,9 @@ with tabs[0]:
|
|
587 |
|
588 |
total_time = time.time() - start_time
|
589 |
|
|
|
|
|
|
|
590 |
# Format details
|
591 |
details = ""
|
592 |
if show_details:
|
@@ -595,9 +488,15 @@ with tabs[0]:
|
|
595 |
3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
|
596 |
2-Class Probability: {result['prob2class']:.2f}
|
597 |
2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
"""
|
599 |
|
600 |
-
# Store result
|
601 |
st.session_state.latest_result = {
|
602 |
"claim": claim,
|
603 |
"evidence": result['evidence'],
|
@@ -608,7 +507,8 @@ with tabs[0]:
|
|
608 |
"details": details,
|
609 |
"qatc_model": qatc_model_name,
|
610 |
"bc_model": bc_model_name,
|
611 |
-
"tc_model": tc_model_name
|
|
|
612 |
}
|
613 |
|
614 |
# Add to history
|
@@ -616,7 +516,7 @@ with tabs[0]:
|
|
616 |
st.session_state.history = []
|
617 |
st.session_state.history.append(st.session_state.latest_result)
|
618 |
|
619 |
-
# Display result
|
620 |
res = st.session_state.latest_result
|
621 |
verdict_class = {
|
622 |
"SUPPORTED": "verdict-supported",
|
@@ -636,13 +536,29 @@ with tabs[0]:
|
|
636 |
<p><strong>Thời gian trích xuất bằng chứng:</strong> {res['evidence_time']:.2f} giây</p>
|
637 |
<p><strong>Thời gian phân loại:</strong> {res['verdict_time']:.2f} giây</p>
|
638 |
<p><strong>Tổng thời gian:</strong> {res['total_time']:.2f} giây</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
639 |
</div>
|
640 |
{f"<div class='code-block'><pre>{res['details']}</pre></div>" if show_details else ""}
|
641 |
</div>
|
642 |
""", unsafe_allow_html=True)
|
643 |
|
644 |
-
# Download button
|
645 |
-
result_text = f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
646 |
st.download_button(
|
647 |
"📥 Tải kết quả",
|
648 |
data=result_text,
|
@@ -655,22 +571,9 @@ with tabs[0]:
|
|
655 |
# --- Tab History ---
|
656 |
with tabs[1]:
|
657 |
st.markdown("### 📊 Lịch sử Kiểm chứng")
|
658 |
-
|
659 |
-
# Add search functionality
|
660 |
-
search_query = st.text_input("🔍 Tìm kiếm trong lịch sử", "")
|
661 |
-
|
662 |
if 'history' in st.session_state and st.session_state.history:
|
663 |
-
# Filter history based on search query
|
664 |
-
filtered_history = st.session_state.history
|
665 |
-
if search_query:
|
666 |
-
filtered_history = [
|
667 |
-
record for record in st.session_state.history
|
668 |
-
if search_query.lower() in record['claim'].lower() or
|
669 |
-
search_query.lower() in record['evidence'].lower()
|
670 |
-
]
|
671 |
-
|
672 |
# Download full history
|
673 |
-
history_df = pd.DataFrame(
|
674 |
st.download_button(
|
675 |
"📥 Tải toàn bộ lịch sử",
|
676 |
data=history_df.to_csv(index=False).encode('utf-8'),
|
@@ -678,63 +581,23 @@ with tabs[1]:
|
|
678 |
mime="text/csv"
|
679 |
)
|
680 |
|
681 |
-
# Display history
|
682 |
-
for idx, record in enumerate(reversed(
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
<
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
<p><strong>Thời gian:</strong> {record['total_time']:.2f} giây</p>
|
692 |
-
</div>
|
693 |
-
""", unsafe_allow_html=True)
|
694 |
-
|
695 |
-
with col2:
|
696 |
-
if st.button("🔄 So sánh", key=f"compare_{idx}"):
|
697 |
-
st.session_state.selected_for_comparison = record
|
698 |
-
|
699 |
-
# --- Tab Analysis ---
|
700 |
-
with tabs[2]:
|
701 |
-
st.markdown("### 📈 Phân tích Chi tiết")
|
702 |
-
|
703 |
-
if 'history' in st.session_state and st.session_state.history:
|
704 |
-
# Add timestamp to history records
|
705 |
-
for record in st.session_state.history:
|
706 |
-
if 'timestamp' not in record:
|
707 |
-
record['timestamp'] = datetime.now()
|
708 |
-
|
709 |
-
# Distribution analysis
|
710 |
-
st.markdown("#### 📊 Phân bố Kết quả")
|
711 |
-
verdict_fig = analyze_verdict_distribution(st.session_state.history)
|
712 |
-
if verdict_fig:
|
713 |
-
st.plotly_chart(verdict_fig, use_container_width=True)
|
714 |
-
|
715 |
-
# Processing time analysis
|
716 |
-
st.markdown("#### ⏱️ Phân tích Thời gian Xử lý")
|
717 |
-
time_fig = analyze_processing_time(st.session_state.history)
|
718 |
-
if time_fig:
|
719 |
-
st.plotly_chart(time_fig, use_container_width=True)
|
720 |
-
|
721 |
-
# Model performance analysis
|
722 |
-
st.markdown("#### 🧠 Phân tích Hiệu suất Mô hình")
|
723 |
-
model_stats = pd.DataFrame(st.session_state.history)
|
724 |
-
if not model_stats.empty:
|
725 |
-
st.markdown("##### Thống kê theo Mô hình")
|
726 |
-
model_performance = model_stats.groupby(['qatc_model', 'bc_model', 'tc_model']).agg({
|
727 |
-
'total_time': ['mean', 'count'],
|
728 |
-
'verdict': lambda x: (x == 'SUPPORTED').mean()
|
729 |
-
}).round(2)
|
730 |
-
st.dataframe(model_performance)
|
731 |
else:
|
732 |
-
st.info("Chưa có
|
733 |
|
734 |
# --- Tab Info ---
|
735 |
-
with tabs[
|
736 |
st.markdown("""
|
737 |
-
<div class="
|
738 |
<h3>ℹ️ Thông tin về SemViQA</h3>
|
739 |
<p>SemViQA là hệ thống kiểm chứng thông tin tự động cho tiếng Việt, được phát triển bởi nhóm nghiên cứu tại Đại học Công nghệ Thông tin - Đại học Quốc gia TP.HCM.</p>
|
740 |
|
@@ -759,13 +622,5 @@ with tabs[3]:
|
|
759 |
<li><strong>REFUTED:</strong> Câu khẳng định bị bác bỏ bởi bằng chứng</li>
|
760 |
<li><strong>NEI:</strong> Không đủ bằng chứng để kết luận</li>
|
761 |
</ul>
|
762 |
-
|
763 |
-
<h4>🆕 Tính năng Mới</h4>
|
764 |
-
<ul>
|
765 |
-
<li><strong>Phân tích Chi tiết:</strong> Xem thống kê và biểu đồ về kết quả kiểm chứng</li>
|
766 |
-
<li><strong>Tìm kiếm Lịch sử:</strong> Dễ dàng tìm kiếm trong lịch sử kiểm chứng</li>
|
767 |
-
<li><strong>So sánh Kết quả:</strong> So sánh các kết quả kiểm chứng với nhau</li>
|
768 |
-
<li><strong>Báo cáo Chi tiết:</strong> Xuất báo cáo chi tiết về kết quả kiểm chứng</li>
|
769 |
-
</ul>
|
770 |
</div>
|
771 |
""", unsafe_allow_html=True)
|
|
|
10 |
import os
|
11 |
import psutil
|
12 |
import gc
|
13 |
+
import numpy as np
|
14 |
+
from functools import lru_cache
|
15 |
+
import threading
|
16 |
+
from concurrent.futures import ThreadPoolExecutor
|
17 |
+
import torch.nn.functional as F
|
18 |
|
19 |
# Set environment variables to optimize CPU performance
|
20 |
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
|
21 |
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
|
22 |
+
torch.set_num_threads(psutil.cpu_count(logical=False))
|
23 |
|
24 |
# Set device globally
|
25 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
+
# Cache for model outputs
|
28 |
+
@lru_cache(maxsize=1000)
|
29 |
+
def cached_classify_claim(claim, evidence, model_name, is_bc=False):
|
30 |
+
tokenizer, model = load_model(model_name, ClaimModelForClassification, is_bc=is_bc, device=DEVICE)
|
31 |
+
with torch.no_grad():
|
32 |
+
prob, pred = classify_claim(claim, evidence, model, tokenizer, DEVICE)
|
33 |
+
return prob, pred
|
34 |
+
|
35 |
+
# Optimized model loading with caching
|
36 |
+
@st.cache_resource(ttl=3600) # Cache for 1 hour
|
37 |
def load_model(model_name, model_class, is_bc=False, device=None):
|
38 |
if device is None:
|
39 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
42 |
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
|
43 |
model.eval()
|
44 |
|
45 |
+
# Optimize model for inference
|
46 |
+
if device == "cuda":
|
47 |
+
model = model.half() # Use FP16 for faster inference
|
48 |
+
torch.cuda.empty_cache()
|
49 |
+
|
50 |
model.to(device)
|
51 |
return tokenizer, model
|
52 |
|
53 |
+
# Optimized text preprocessing
|
54 |
+
@st.cache_data(ttl=3600)
|
55 |
def preprocess_text(text):
|
56 |
# Add any text cleaning or normalization here
|
57 |
return text.strip()
|
58 |
|
59 |
+
# Batch processing for evidence extraction
|
60 |
+
def batch_extract_evidence(claims, contexts, model_qatc, tokenizer_qatc, batch_size=4):
|
61 |
+
results = []
|
62 |
+
for i in range(0, len(claims), batch_size):
|
63 |
+
batch_claims = claims[i:i + batch_size]
|
64 |
+
batch_contexts = contexts[i:i + batch_size]
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
batch_results = [
|
68 |
+
extract_evidence_tfidf_qatc(
|
69 |
+
claim, context, model_qatc, tokenizer_qatc,
|
70 |
+
DEVICE,
|
71 |
+
confidence_threshold=0.5,
|
72 |
+
length_ratio_threshold=0.5
|
73 |
+
)
|
74 |
+
for claim, context in zip(batch_claims, batch_contexts)
|
75 |
+
]
|
76 |
+
results.extend(batch_results)
|
77 |
+
return results
|
78 |
+
|
79 |
+
# Optimized verification function with parallel processing
|
80 |
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc,
|
81 |
+
model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
|
82 |
+
# Extract evidence with optimized settings
|
83 |
evidence_start_time = time.time()
|
84 |
evidence = extract_evidence_tfidf_qatc(
|
85 |
claim, context, model_qatc, tokenizer_qatc,
|
|
|
89 |
)
|
90 |
evidence_time = time.time() - evidence_start_time
|
91 |
|
92 |
+
# Clear memory after evidence extraction
|
93 |
+
if DEVICE == "cuda":
|
94 |
+
torch.cuda.empty_cache()
|
95 |
gc.collect()
|
96 |
|
97 |
+
# Parallel classification using ThreadPoolExecutor
|
98 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
99 |
+
future_tc = executor.submit(cached_classify_claim, claim, evidence, tc_model_name, False)
|
100 |
+
future_bc = executor.submit(cached_classify_claim, claim, evidence, bc_model_name, True)
|
101 |
+
|
102 |
+
prob3class, pred_tc = future_tc.result()
|
103 |
+
prob2class, pred_bc = future_bc.result()
|
104 |
+
|
105 |
verdict_start_time = time.time()
|
106 |
with torch.no_grad():
|
107 |
verdict = "NEI"
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
if pred_tc != 0:
|
|
|
|
|
|
|
109 |
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
|
110 |
+
|
111 |
verdict_time = time.time() - verdict_start_time
|
112 |
|
113 |
return {
|
|
|
121 |
"pred_bc": pred_bc
|
122 |
}
|
123 |
|
124 |
+
# Add performance monitoring
|
125 |
+
def monitor_performance():
|
126 |
+
if DEVICE == "cuda":
|
127 |
+
return {
|
128 |
+
"gpu_memory_used": torch.cuda.memory_allocated() / 1024**2,
|
129 |
+
"gpu_memory_cached": torch.cuda.memory_reserved() / 1024**2,
|
130 |
+
"cpu_percent": psutil.cpu_percent(),
|
131 |
+
"memory_percent": psutil.virtual_memory().percent
|
132 |
+
}
|
133 |
+
return {
|
134 |
+
"cpu_percent": psutil.cpu_percent(),
|
135 |
+
"memory_percent": psutil.virtual_memory().percent
|
136 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
# Set page configuration
|
139 |
st.set_page_config(
|
|
|
148 |
<style>
|
149 |
/* Main theme colors */
|
150 |
:root {
|
151 |
+
--primary-color: #1f77b4;
|
152 |
+
--secondary-color: #2c3e50;
|
153 |
--accent-color: #e74c3c;
|
|
|
|
|
154 |
--background-color: #f8f9fa;
|
155 |
--text-color: #2c3e50;
|
156 |
--border-color: #e0e0e0;
|
|
|
|
|
157 |
}
|
158 |
|
159 |
/* General styling */
|
160 |
.stApp {
|
161 |
background-color: var(--background-color);
|
162 |
color: var(--text-color);
|
|
|
163 |
}
|
164 |
|
165 |
/* Header styling */
|
166 |
.main-header {
|
167 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
168 |
color: white;
|
169 |
+
padding: 2rem;
|
170 |
+
border-radius: 10px;
|
171 |
margin-bottom: 2rem;
|
172 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
}
|
174 |
|
175 |
.main-title {
|
176 |
+
font-size: 2.5rem;
|
177 |
+
font-weight: bold;
|
178 |
text-align: center;
|
179 |
margin-bottom: 1rem;
|
|
|
|
|
180 |
}
|
181 |
|
182 |
.sub-title {
|
183 |
+
font-size: 1.2rem;
|
184 |
text-align: center;
|
185 |
opacity: 0.9;
|
|
|
186 |
}
|
187 |
|
188 |
/* Input styling */
|
189 |
.stTextArea textarea {
|
190 |
border: 2px solid var(--border-color);
|
191 |
+
border-radius: 8px;
|
192 |
+
padding: 1rem;
|
193 |
+
font-size: 1rem;
|
194 |
min-height: 150px;
|
195 |
background-color: white;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
}
|
197 |
|
198 |
/* Button styling */
|
199 |
.stButton>button {
|
200 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
201 |
color: white;
|
202 |
border: none;
|
203 |
+
border-radius: 8px;
|
204 |
+
padding: 0.8rem 2rem;
|
205 |
+
font-size: 1.1rem;
|
206 |
+
font-weight: bold;
|
207 |
transition: all 0.3s ease;
|
|
|
|
|
208 |
}
|
209 |
|
210 |
.stButton>button:hover {
|
211 |
transform: translateY(-2px);
|
212 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
213 |
}
|
214 |
|
215 |
/* Result box styling */
|
216 |
.result-box {
|
217 |
background-color: white;
|
218 |
+
border-radius: 12px;
|
219 |
+
padding: 2rem;
|
220 |
+
margin: 1rem 0;
|
221 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
|
|
|
|
222 |
}
|
223 |
|
224 |
+
/* Info section styling */
|
225 |
+
.info-section {
|
226 |
+
background-color: white;
|
227 |
+
border-radius: 12px;
|
228 |
+
padding: 2rem;
|
229 |
+
margin: 1rem 0;
|
230 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
231 |
+
}
|
232 |
+
|
233 |
+
.info-section h3 {
|
234 |
+
color: var(--primary-color);
|
235 |
+
font-size: 1.8rem;
|
236 |
+
margin-bottom: 1.5rem;
|
237 |
+
border-bottom: 2px solid var(--border-color);
|
238 |
+
padding-bottom: 0.5rem;
|
239 |
+
}
|
240 |
+
|
241 |
+
.info-section h4 {
|
242 |
+
color: var(--secondary-color);
|
243 |
+
font-size: 1.4rem;
|
244 |
+
margin: 1.5rem 0 1rem 0;
|
245 |
+
}
|
246 |
+
|
247 |
+
.info-section p {
|
248 |
+
font-size: 1.1rem;
|
249 |
+
line-height: 1.6;
|
250 |
+
color: var(--text-color);
|
251 |
+
margin-bottom: 1.5rem;
|
252 |
+
}
|
253 |
+
|
254 |
+
.info-section ol, .info-section ul {
|
255 |
+
margin-left: 1.5rem;
|
256 |
+
margin-bottom: 1.5rem;
|
257 |
+
}
|
258 |
+
|
259 |
+
.info-section li {
|
260 |
+
font-size: 1.1rem;
|
261 |
+
line-height: 1.6;
|
262 |
+
margin-bottom: 0.5rem;
|
263 |
+
}
|
264 |
+
|
265 |
+
.info-section strong {
|
266 |
+
color: var(--primary-color);
|
267 |
}
|
268 |
|
269 |
.verdict {
|
270 |
+
font-size: 1.8rem;
|
271 |
+
font-weight: bold;
|
272 |
+
padding: 1rem;
|
273 |
+
border-radius: 8px;
|
274 |
+
margin: 1rem 0;
|
275 |
text-align: center;
|
|
|
276 |
}
|
277 |
|
278 |
.verdict-supported {
|
279 |
+
background-color: #d4edda;
|
280 |
+
color: #155724;
|
|
|
281 |
}
|
282 |
|
283 |
.verdict-refuted {
|
284 |
+
background-color: #f8d7da;
|
285 |
+
color: #721c24;
|
|
|
286 |
}
|
287 |
|
288 |
.verdict-nei {
|
289 |
+
background-color: #fff3cd;
|
290 |
+
color: #856404;
|
|
|
291 |
}
|
292 |
|
293 |
/* Sidebar styling */
|
294 |
.css-1d391kg {
|
295 |
background-color: white;
|
296 |
+
padding: 2rem;
|
297 |
+
border-radius: 12px;
|
298 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
299 |
}
|
300 |
|
301 |
/* Stats box styling */
|
302 |
.stats-box {
|
303 |
+
background-color: white;
|
304 |
+
border-radius: 8px;
|
305 |
+
padding: 1rem;
|
306 |
+
margin: 0.5rem 0;
|
307 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
308 |
}
|
309 |
|
310 |
/* Code block styling */
|
311 |
.code-block {
|
312 |
+
background-color: #f8f9fa;
|
313 |
+
border: 1px solid var(--border-color);
|
314 |
+
border-radius: 8px;
|
315 |
+
padding: 1rem;
|
316 |
+
font-family: monospace;
|
317 |
+
margin: 1rem 0;
|
|
|
318 |
}
|
319 |
|
320 |
/* Tab styling */
|
321 |
.stTabs [data-baseweb="tab-list"] {
|
322 |
gap: 2rem;
|
|
|
323 |
}
|
324 |
|
325 |
.stTabs [data-baseweb="tab"] {
|
326 |
background-color: white;
|
327 |
+
border-radius: 8px;
|
328 |
+
padding: 0.5rem 1rem;
|
329 |
margin: 0 0.5rem;
|
|
|
|
|
|
|
330 |
}
|
331 |
|
332 |
.stTabs [aria-selected="true"] {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
background-color: var(--primary-color);
|
334 |
color: white;
|
335 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
</style>
|
337 |
""", unsafe_allow_html=True)
|
338 |
|
339 |
+
# Main header
|
340 |
st.markdown("""
|
341 |
<div class="main-header">
|
342 |
<div class="main-title">SemViQA</div>
|
|
|
344 |
</div>
|
345 |
""", unsafe_allow_html=True)
|
346 |
|
347 |
+
# Sidebar
|
348 |
with st.sidebar:
|
349 |
+
st.markdown("### ⚙️ Cài đặt Hệ thống")
|
|
|
|
|
|
|
|
|
350 |
|
351 |
+
# Model selection
|
352 |
st.markdown("#### 🧠 Chọn Mô hình")
|
353 |
qatc_model_name = st.selectbox(
|
354 |
"Mô hình QATC",
|
|
|
384 |
]
|
385 |
)
|
386 |
|
387 |
+
# Threshold settings
|
388 |
st.markdown("#### ⚖️ Ngưỡng Phân tích")
|
389 |
tfidf_threshold = st.slider(
|
390 |
"Ngưỡng TF-IDF",
|
|
|
398 |
help="Điều chỉnh độ dài tối đa của bằng chứng"
|
399 |
)
|
400 |
|
401 |
+
# Display settings
|
402 |
st.markdown("#### 👁️ Hiển thị")
|
403 |
show_details = st.checkbox(
|
404 |
"Hiển thị Chi tiết Xác suất",
|
|
|
406 |
help="Hiển thị thông tin chi tiết về xác suất dự đoán"
|
407 |
)
|
408 |
|
409 |
+
# Performance settings
|
410 |
st.markdown("#### ⚡ Hiệu suất")
|
411 |
num_threads = st.slider(
|
412 |
"Số luồng CPU",
|
|
|
418 |
os.environ["MKL_NUM_THREADS"] = str(num_threads)
|
419 |
|
420 |
# Main content
|
421 |
+
tabs = st.tabs(["🔍 Kiểm chứng", "📊 Lịch sử", "ℹ️ Thông tin"])
|
422 |
|
423 |
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
|
424 |
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
|
|
|
459 |
|
460 |
# Clear memory and perform verification
|
461 |
gc.collect()
|
462 |
+
if DEVICE == "cuda":
|
463 |
+
torch.cuda.empty_cache()
|
464 |
+
|
465 |
start_time = time.time()
|
466 |
|
467 |
+
# Monitor initial performance
|
468 |
+
initial_perf = monitor_performance()
|
469 |
+
|
470 |
result = perform_verification(
|
471 |
preprocessed_claim, preprocessed_context,
|
472 |
model_qatc, tokenizer_qatc,
|
|
|
477 |
|
478 |
total_time = time.time() - start_time
|
479 |
|
480 |
+
# Monitor final performance
|
481 |
+
final_perf = monitor_performance()
|
482 |
+
|
483 |
# Format details
|
484 |
details = ""
|
485 |
if show_details:
|
|
|
488 |
3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
|
489 |
2-Class Probability: {result['prob2class']:.2f}
|
490 |
2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}
|
491 |
+
|
492 |
+
Performance Metrics:
|
493 |
+
- GPU Memory Used: {final_perf.get('gpu_memory_used', 'N/A'):.2f} MB
|
494 |
+
- GPU Memory Cached: {final_perf.get('gpu_memory_cached', 'N/A'):.2f} MB
|
495 |
+
- CPU Usage: {final_perf['cpu_percent']}%
|
496 |
+
- Memory Usage: {final_perf['memory_percent']}%
|
497 |
"""
|
498 |
|
499 |
+
# Store result with performance metrics
|
500 |
st.session_state.latest_result = {
|
501 |
"claim": claim,
|
502 |
"evidence": result['evidence'],
|
|
|
507 |
"details": details,
|
508 |
"qatc_model": qatc_model_name,
|
509 |
"bc_model": bc_model_name,
|
510 |
+
"tc_model": tc_model_name,
|
511 |
+
"performance_metrics": final_perf
|
512 |
}
|
513 |
|
514 |
# Add to history
|
|
|
516 |
st.session_state.history = []
|
517 |
st.session_state.history.append(st.session_state.latest_result)
|
518 |
|
519 |
+
# Display result with performance metrics
|
520 |
res = st.session_state.latest_result
|
521 |
verdict_class = {
|
522 |
"SUPPORTED": "verdict-supported",
|
|
|
536 |
<p><strong>Thời gian trích xuất bằng chứng:</strong> {res['evidence_time']:.2f} giây</p>
|
537 |
<p><strong>Thời gian phân loại:</strong> {res['verdict_time']:.2f} giây</p>
|
538 |
<p><strong>Tổng thời gian:</strong> {res['total_time']:.2f} giây</p>
|
539 |
+
<p><strong>Hiệu suất:</strong></p>
|
540 |
+
<ul>
|
541 |
+
<li>CPU: {res['performance_metrics']['cpu_percent']}%</li>
|
542 |
+
<li>RAM: {res['performance_metrics']['memory_percent']}%</li>
|
543 |
+
{f"<li>GPU Memory: {res['performance_metrics'].get('gpu_memory_used', 'N/A'):.2f} MB</li>" if DEVICE == "cuda" else ""}
|
544 |
+
</ul>
|
545 |
</div>
|
546 |
{f"<div class='code-block'><pre>{res['details']}</pre></div>" if show_details else ""}
|
547 |
</div>
|
548 |
""", unsafe_allow_html=True)
|
549 |
|
550 |
+
# Download button with performance metrics
|
551 |
+
result_text = f"""
|
552 |
+
Câu khẳng định: {res['claim']}
|
553 |
+
Bằng chứng: {res['evidence']}
|
554 |
+
Kết luận: {res['verdict']}
|
555 |
+
Chi tiết: {res['details']}
|
556 |
+
|
557 |
+
Hiệu suất:
|
558 |
+
- CPU: {res['performance_metrics']['cpu_percent']}%
|
559 |
+
- RAM: {res['performance_metrics']['memory_percent']}%
|
560 |
+
{f"- GPU Memory: {res['performance_metrics'].get('gpu_memory_used', 'N/A'):.2f} MB" if DEVICE == "cuda" else ""}
|
561 |
+
"""
|
562 |
st.download_button(
|
563 |
"📥 Tải kết quả",
|
564 |
data=result_text,
|
|
|
571 |
# --- Tab History ---
|
572 |
with tabs[1]:
|
573 |
st.markdown("### 📊 Lịch sử Kiểm chứng")
|
|
|
|
|
|
|
|
|
574 |
if 'history' in st.session_state and st.session_state.history:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
575 |
# Download full history
|
576 |
+
history_df = pd.DataFrame(st.session_state.history)
|
577 |
st.download_button(
|
578 |
"📥 Tải toàn bộ lịch sử",
|
579 |
data=history_df.to_csv(index=False).encode('utf-8'),
|
|
|
581 |
mime="text/csv"
|
582 |
)
|
583 |
|
584 |
+
# Display history
|
585 |
+
for idx, record in enumerate(reversed(st.session_state.history), 1):
|
586 |
+
st.markdown(f"""
|
587 |
+
<div class="result-box">
|
588 |
+
<h4>Kiểm chứng #{idx}</h4>
|
589 |
+
<p><strong>Câu khẳng định:</strong> {record['claim']}</p>
|
590 |
+
<p><strong>Kết luận:</strong> {verdict_icons.get(record['verdict'], '')} {record['verdict']}</p>
|
591 |
+
<p><strong>Thời gian:</strong> {record['total_time']:.2f} giây</p>
|
592 |
+
</div>
|
593 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
594 |
else:
|
595 |
+
st.info("Chưa có lịch sử kiểm chứng.")
|
596 |
|
597 |
# --- Tab Info ---
|
598 |
+
with tabs[2]:
|
599 |
st.markdown("""
|
600 |
+
<div class="info-section">
|
601 |
<h3>ℹ️ Thông tin về SemViQA</h3>
|
602 |
<p>SemViQA là hệ thống kiểm chứng thông tin tự động cho tiếng Việt, được phát triển bởi nhóm nghiên cứu tại Đại học Công nghệ Thông tin - Đại học Quốc gia TP.HCM.</p>
|
603 |
|
|
|
622 |
<li><strong>REFUTED:</strong> Câu khẳng định bị bác bỏ bởi bằng chứng</li>
|
623 |
<li><strong>NEI:</strong> Không đủ bằng chứng để kết luận</li>
|
624 |
</ul>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
625 |
</div>
|
626 |
""", unsafe_allow_html=True)
|