Spaces:
Sleeping
Sleeping
File size: 23,207 Bytes
f4d5aab 65d40d5 7725101 0be0916 f4d5aab 7725101 0be0916 7725101 042e3b2 0be0916 d7db16b 0be0916 d7db16b 0be0916 a486265 0be0916 a486265 0be0916 a486265 0be0916 a486265 c616050 0be0916 a486265 0be0916 a486265 0be0916 a486265 6fc23f1 c616050 6fc23f1 f4d5aab 6fc23f1 f4d5aab 6fc23f1 0be0916 6fc23f1 3f899a4 6fc23f1 3f899a4 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 0be0916 3f899a4 6fc23f1 3f899a4 6fc23f1 3f899a4 0be0916 3f899a4 6fc23f1 3f899a4 6fc23f1 0be0916 6fc23f1 3f899a4 0be0916 6fc23f1 0be0916 6fc23f1 3f899a4 6fc23f1 0be0916 3f899a4 6fc23f1 3f899a4 6fc23f1 0be0916 4ab50fb 0be0916 3f899a4 6fc23f1 3f899a4 0be0916 6fc23f1 3f899a4 6fc23f1 0be0916 3f899a4 6fc23f1 0be0916 3f899a4 6fc23f1 0be0916 3f899a4 6fc23f1 0be0916 3f899a4 6fc23f1 0be0916 4d37b8b 6fc23f1 be06814 0be0916 6fc23f1 0be0916 6fc23f1 4ab50fb f4d5aab 6fc23f1 f4d5aab 0be0916 6fc23f1 c616050 6fc23f1 f0d09f3 0be0916 6fc23f1 c616050 6fc23f1 0be0916 c616050 6fc23f1 c616050 6fc23f1 8a052ba 6fc23f1 c616050 6fc23f1 12ccc3e a48f89a 8a052ba 6fc23f1 c616050 6fc23f1 12ccc3e a48f89a 8a052ba 6fc23f1 0be0916 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 0be0916 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 0be0916 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 4d37b8b 6fc23f1 c616050 4d37b8b d7db16b 7c117db 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 99fbeb9 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 69b5fd0 6fc23f1 ed692f5 6fc23f1 69b5fd0 0be0916 69b5fd0 0be0916 6fc23f1 69b5fd0 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 0be0916 6fc23f1 69b5fd0 6fc23f1 c616050 6fc23f1 c616050 0be0916 69b5fd0 0be0916 4fdfda4 6fc23f1 0be0916 c616050 0be0916 c616050 0be0916 69b5fd0 0be0916 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 8a052ba c616050 6fc23f1 c616050 6fc23f1 0be0916 6fc23f1 c616050 6fc23f1 c616050 6fc23f1 0be0916 c616050 0be0916 6fc23f1 c616050 6fc23f1 0be0916 6fc23f1 c616050 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import streamlit as st
import torch
from transformers import AutoTokenizer
from semviqa.ser.qatc_model import QATCForQuestionAnswering
from semviqa.tvc.model import ClaimModelForClassification
from semviqa.ser.ser_eval import extract_evidence_tfidf_qatc
from semviqa.tvc.tvc_eval import classify_claim
import time
import pandas as pd
import os
import psutil
import gc
import numpy as np
from functools import lru_cache
import threading
from concurrent.futures import ThreadPoolExecutor
import torch.nn.functional as F
# Set environment variables to optimize CPU performance
os.environ["OMP_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
os.environ["MKL_NUM_THREADS"] = str(psutil.cpu_count(logical=False))
torch.set_num_threads(psutil.cpu_count(logical=False))
# Set device globally
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Cache for model outputs
@lru_cache(maxsize=1000)
def cached_classify_claim(claim, evidence, model_name, is_bc=False):
tokenizer, model = load_model(model_name, ClaimModelForClassification, is_bc=is_bc, device=DEVICE)
with torch.no_grad():
prob, pred = classify_claim(claim, evidence, model, tokenizer, DEVICE)
return prob, pred
# Optimized model loading with caching
@st.cache_resource(ttl=3600) # Cache for 1 hour
def load_model(model_name, model_class, is_bc=False, device=None):
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = model_class.from_pretrained(model_name, num_labels=3 if not is_bc else 2)
model.eval()
# Optimize model for inference
if device == "cuda":
model = model.half() # Use FP16 for faster inference
torch.cuda.empty_cache()
model.to(device)
return tokenizer, model
# Optimized text preprocessing
@st.cache_data(ttl=3600)
def preprocess_text(text):
# Add any text cleaning or normalization here
return text.strip()
# Batch processing for evidence extraction
def batch_extract_evidence(claims, contexts, model_qatc, tokenizer_qatc, batch_size=4):
results = []
for i in range(0, len(claims), batch_size):
batch_claims = claims[i:i + batch_size]
batch_contexts = contexts[i:i + batch_size]
with torch.no_grad():
batch_results = [
extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
DEVICE,
confidence_threshold=0.5,
length_ratio_threshold=0.5
)
for claim, context in zip(batch_claims, batch_contexts)
]
results.extend(batch_results)
return results
# Optimized verification function with parallel processing
def perform_verification(claim, context, model_qatc, tokenizer_qatc, model_tc, tokenizer_tc,
model_bc, tokenizer_bc, tfidf_threshold, length_ratio_threshold):
# Extract evidence with optimized settings
evidence_start_time = time.time()
evidence = extract_evidence_tfidf_qatc(
claim, context, model_qatc, tokenizer_qatc,
DEVICE,
confidence_threshold=tfidf_threshold,
length_ratio_threshold=length_ratio_threshold
)
evidence_time = time.time() - evidence_start_time
# Clear memory after evidence extraction
if DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
verdict_start_time = time.time()
# Parallel classification using ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=2) as executor:
future_tc = executor.submit(cached_classify_claim, claim, evidence, tc_model_name, False)
future_bc = executor.submit(cached_classify_claim, claim, evidence, bc_model_name, True)
prob3class, pred_tc = future_tc.result()
prob2class, pred_bc = future_bc.result()
with torch.no_grad():
verdict = "NEI"
if pred_tc != 0:
verdict = "SUPPORTED" if pred_bc == 0 else "REFUTED" if prob2class > prob3class else ["NEI", "SUPPORTED", "REFUTED"][pred_tc]
verdict_time = time.time() - verdict_start_time
return {
"evidence": evidence,
"verdict": verdict,
"evidence_time": evidence_time,
"verdict_time": verdict_time,
"prob3class": prob3class.item() if isinstance(prob3class, torch.Tensor) else prob3class,
"pred_tc": pred_tc,
"prob2class": prob2class.item() if isinstance(prob2class, torch.Tensor) else prob2class,
"pred_bc": pred_bc
}
# Add performance monitoring
def monitor_performance():
if DEVICE == "cuda":
return {
"gpu_memory_used": torch.cuda.memory_allocated() / 1024**2,
"gpu_memory_cached": torch.cuda.memory_reserved() / 1024**2,
"cpu_percent": psutil.cpu_percent(),
"memory_percent": psutil.virtual_memory().percent
}
return {
"cpu_percent": psutil.cpu_percent(),
"memory_percent": psutil.virtual_memory().percent
}
# Set page configuration
st.set_page_config(
page_title="SemViQA - A Semantic Question Answering System for Vietnamese Information Fact-Checking",
page_icon="🔍",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
/* Main theme colors */
:root {
--primary-color: #1f77b4;
--secondary-color: #2c3e50;
--accent-color: #e74c3c;
--background-color: #f8f9fa;
--text-color: #2c3e50;
--border-color: #e0e0e0;
}
/* General styling */
.stApp {
background-color: var(--background-color);
color: var(--text-color);
}
/* Header styling */
.main-header {
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-title {
font-size: 2.5rem;
font-weight: bold;
text-align: center;
margin-bottom: 1rem;
}
.sub-title {
font-size: 1.2rem;
text-align: center;
opacity: 0.9;
}
/* Input styling */
.stTextArea textarea {
border: 2px solid var(--border-color);
border-radius: 8px;
padding: 1rem;
font-size: 1rem;
min-height: 150px;
background-color: white;
}
/* Button styling */
.stButton>button {
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
color: white;
border: none;
border-radius: 8px;
padding: 0.8rem 2rem;
font-size: 1.1rem;
font-weight: bold;
transition: all 0.3s ease;
}
.stButton>button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
}
/* Result box styling */
.result-box {
background-color: white;
border-radius: 12px;
padding: 2rem;
margin: 1rem 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Info section styling */
.info-section {
background-color: white;
border-radius: 12px;
padding: 2rem;
margin: 1rem 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.info-section h3 {
color: var(--primary-color);
font-size: 1.8rem;
margin-bottom: 1.5rem;
border-bottom: 2px solid var(--border-color);
padding-bottom: 0.5rem;
}
.info-section h4 {
color: var(--secondary-color);
font-size: 1.4rem;
margin: 1.5rem 0 1rem 0;
}
.info-section p {
font-size: 1.1rem;
line-height: 1.6;
color: var(--text-color);
margin-bottom: 1.5rem;
}
.info-section ol, .info-section ul {
margin-left: 1.5rem;
margin-bottom: 1.5rem;
}
.info-section li {
font-size: 1.1rem;
line-height: 1.6;
margin-bottom: 0.5rem;
}
.info-section strong {
color: var(--primary-color);
}
.verdict {
font-size: 1.8rem;
font-weight: bold;
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
text-align: center;
}
.verdict-supported {
background-color: #d4edda;
color: #155724;
}
.verdict-refuted {
background-color: #f8d7da;
color: #721c24;
}
.verdict-nei {
background-color: #fff3cd;
color: #856404;
}
/* Sidebar styling */
.css-1d391kg {
background-color: white;
padding: 2rem;
border-radius: 12px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
/* Stats box styling */
.stats-box {
background-color: white;
border-radius: 8px;
padding: 1rem;
margin: 0.5rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
/* Code block styling */
.code-block {
background-color: #f8f9fa;
border: 1px solid var(--border-color);
border-radius: 8px;
padding: 1rem;
font-family: monospace;
margin: 1rem 0;
}
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 2rem;
}
.stTabs [data-baseweb="tab"] {
background-color: white;
border-radius: 8px;
padding: 0.5rem 1rem;
margin: 0 0.5rem;
}
.stTabs [aria-selected="true"] {
background-color: var(--primary-color);
color: white;
}
</style>
""", unsafe_allow_html=True)
# Main header
st.markdown("""
<div class="main-header">
<div class="main-title">SemViQA</div>
<div class="sub-title">A Semantic Question Answering System for Vietnamese Information Fact-Checking</div>
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown("### ⚙️ System Settings")
# Model selection
st.markdown("#### 🧠 Model Selection")
qatc_model_name = st.selectbox(
"QATC Model",
[
"SemViQA/qatc-infoxlm-viwikifc",
"SemViQA/qatc-infoxlm-isedsc01",
"SemViQA/qatc-vimrc-viwikifc",
"SemViQA/qatc-vimrc-isedsc01"
]
)
bc_model_name = st.selectbox(
"Binary Classification Model",
[
"SemViQA/bc-xlmr-viwikifc",
"SemViQA/bc-xlmr-isedsc01",
"SemViQA/bc-infoxlm-viwikifc",
"SemViQA/bc-infoxlm-isedsc01",
"SemViQA/bc-erniem-viwikifc",
"SemViQA/bc-erniem-isedsc01"
]
)
tc_model_name = st.selectbox(
"Three-Class Classification Model",
[
"SemViQA/tc-xlmr-viwikifc",
"SemViQA/tc-xlmr-isedsc01",
"SemViQA/tc-infoxlm-viwikifc",
"SemViQA/tc-infoxlm-isedsc01",
"SemViQA/tc-erniem-viwikifc",
"SemViQA/tc-erniem-isedsc01"
]
)
# Threshold settings
st.markdown("#### ⚖️ Analysis Thresholds")
tfidf_threshold = st.slider(
"Confidence Threshold",
0.0, 1.0, 0.5,
help="Adjust sensitivity in evidence search"
)
length_ratio_threshold = st.slider(
"Length Ratio Threshold",
0.1, 1.0, 0.5,
help="Adjust maximum evidence length"
)
# Display settings
st.markdown("#### 👁️ Display")
show_details = st.checkbox(
"Show Probability Details",
value=False,
help="Display detailed probability information"
)
# Performance settings
st.markdown("#### ⚡ Performance")
num_threads = st.slider(
"CPU Threads",
1, psutil.cpu_count(),
psutil.cpu_count(logical=False),
help="Adjust processing performance"
)
os.environ["OMP_NUM_THREADS"] = str(num_threads)
os.environ["MKL_NUM_THREADS"] = str(num_threads)
# Main content
tabs = st.tabs(["🔍 Verify", "📊 History", "ℹ️ Info"])
tokenizer_qatc, model_qatc = load_model(qatc_model_name, QATCForQuestionAnswering, device=DEVICE)
tokenizer_bc, model_bc = load_model(bc_model_name, ClaimModelForClassification, is_bc=True, device=DEVICE)
tokenizer_tc, model_tc = load_model(tc_model_name, ClaimModelForClassification, device=DEVICE)
verdict_icons = {
"SUPPORTED": "✅",
"REFUTED": "❌",
"NEI": "⚠️"
}
# --- Tab Verify ---
with tabs[0]:
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("### 📝 Input Information")
claim = st.text_area(
"Claim to Verify",
"Chiến tranh với Campuchia đã kết thúc trước khi Việt Nam thống nhất.",
help="Enter the claim to be verified"
)
context = st.text_area(
"Context",
"Sau khi thống nhất, Việt Nam tiếp tục gặp khó khăn do sự sụp đổ và tan rã của đồng minh Liên Xô cùng Khối phía Đông, các lệnh cấm vận của Hoa Kỳ, chiến tranh với Campuchia, biên giới giáp Trung Quốc và hậu quả của chính sách bao cấp sau nhiều năm áp dụng. Năm 1986, Đảng Cộng sản ban hành cải cách đổi mới, tạo điều kiện hình thành kinh tế thị trường và hội nhập sâu rộng. Cải cách đổi mới kết hợp cùng quy mô dân số lớn đưa Việt Nam trở thành một trong những nước đang phát triển có tốc độ tăng trưởng thuộc nhóm nhanh nhất thế giới, được coi là Hổ mới châu Á dù cho vẫn gặp phải những thách thức như tham nhũng, tội phạm gia tăng, ô nhiễm môi trường và phúc lợi xã hội chưa đầy đủ. Ngoài ra, giới bất đồng chính kiến, chính phủ một số nước phương Tây và các tổ chức theo dõi nhân quyền có quan điểm chỉ trích hồ sơ nhân quyền của Việt Nam liên quan đến các vấn đề tôn giáo, kiểm duyệt truyền thông, hạn chế hoạt động ủng hộ nhân quyền cùng các quyền tự do dân sự.",
help="Enter context or reference text"
)
verify_button = st.button("🔍 Verify", use_container_width=True)
with col2:
st.markdown("### 📊 Results")
if verify_button:
with st.spinner("Verifying..."):
# Preprocess texts
preprocessed_claim = preprocess_text(claim)
preprocessed_context = preprocess_text(context)
# Clear memory and perform verification
gc.collect()
if DEVICE == "cuda":
torch.cuda.empty_cache()
start_time = time.time()
# Monitor initial performance
initial_perf = monitor_performance()
result = perform_verification(
preprocessed_claim, preprocessed_context,
model_qatc, tokenizer_qatc,
model_tc, tokenizer_tc,
model_bc, tokenizer_bc,
tfidf_threshold, length_ratio_threshold
)
total_time = time.time() - start_time
# Monitor final performance
final_perf = monitor_performance()
# Format details
details = ""
if show_details:
gpu_memory_used = f"{float(final_perf.get('gpu_memory_used', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"
gpu_memory_cached = f"{float(final_perf.get('gpu_memory_cached', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"
details = f"""
Details:
- 3-Class Probability: {result['prob3class']:.2f}
- 3-Class Predicted Label: {['NEI', 'SUPPORTED', 'REFUTED'][result['pred_tc']]}
- 2-Class Probability: {result['prob2class']:.2f}
2-Class Predicted Label: {['SUPPORTED', 'REFUTED'][result['pred_bc']] if isinstance(result['pred_bc'], int) and result['pred_tc'] != 0 else 'Not used'}
Performance Metrics:
- GPU Memory Used: {gpu_memory_used}
- GPU Memory Cached: {gpu_memory_cached}
- CPU Usage: {final_perf['cpu_percent']}%
- Memory Usage: {final_perf['memory_percent']}%
"""
# Store result with performance metrics
st.session_state.latest_result = {
"claim": claim,
"evidence": result['evidence'],
"verdict": result['verdict'],
"evidence_time": result['evidence_time'],
"verdict_time": result['verdict_time'],
"total_time": total_time,
"details": details,
"qatc_model": qatc_model_name,
"bc_model": bc_model_name,
"tc_model": tc_model_name,
"performance_metrics": final_perf
}
# Add to history
if 'history' not in st.session_state:
st.session_state.history = []
st.session_state.history.append(st.session_state.latest_result)
# Display result with performance metrics
res = st.session_state.latest_result
verdict_class = {
"SUPPORTED": "verdict-supported",
"REFUTED": "verdict-refuted",
"NEI": "verdict-nei"
}.get(res['verdict'], "")
gpu_memory_text = (
f"<li>GPU Memory: {float(res['performance_metrics'].get('gpu_memory_used', 0)):.2f} MB</li>"
if DEVICE == "cuda"
else "<li>GPU Memory: N/A</li>"
)
st.markdown(f"""
<div class="result-box">
<h3>Verification Results</h3>
<p><strong>Claim:</strong> {res['claim']}</p>
<p><strong>Evidence:</strong> {res['evidence']}</p>
<p class="verdict {verdict_class}">
{verdict_icons.get(res['verdict'], '')} {res['verdict']}
</p>
<div class="stats-box">
<p><strong>Evidence Extraction Time:</strong> {res['evidence_time']:.2f} seconds</p>
<p><strong>Classification Time:</strong> {res['verdict_time']:.2f} seconds</p>
<p><strong>Total Time:</strong> {res['total_time']:.2f} seconds</p>
<p><strong>Performance:</strong></p>
<ul>
<li>CPU: {res['performance_metrics']['cpu_percent']}%</li>
<li>RAM: {res['performance_metrics']['memory_percent']}%</li>
{gpu_memory_text}
</ul>
</div>
{f"<div class='code-block'><pre>{res['details']}</pre></div>" if show_details else ""}
</div>
""", unsafe_allow_html=True)
# Download button with performance metrics
result_text = f"""
Claim: {res['claim']}
Evidence: {res['evidence']}
Verdict: {res['verdict']}
Details: {res['details']}
Performance:
- CPU: {res['performance_metrics']['cpu_percent']}%
- RAM: {res['performance_metrics']['memory_percent']}%
- GPU Memory: {f"{float(res['performance_metrics'].get('gpu_memory_used', 0)):.2f} MB" if DEVICE == "cuda" else "N/A"}
"""
st.download_button(
"📥 Download Results",
data=result_text,
file_name="verification_results.txt",
mime="text/plain"
)
else:
st.info("Please enter information and click Verify to begin.")
# --- Tab History ---
with tabs[1]:
st.markdown("### 📊 Verification History")
if 'history' in st.session_state and st.session_state.history:
# Download full history
history_df = pd.DataFrame(st.session_state.history)
st.download_button(
"📥 Download Full History",
data=history_df.to_csv(index=False).encode('utf-8'),
file_name="verification_history.csv",
mime="text/csv"
)
# Display history
for idx, record in enumerate(reversed(st.session_state.history), 1):
st.markdown(f"""
<div class="result-box">
<h4>Verification #{idx}</h4>
<p><strong>Claim:</strong> {record['claim']}</p>
<p><strong>Verdict:</strong> {verdict_icons.get(record['verdict'], '')} {record['verdict']}</p>
<p><strong>Time:</strong> {record['total_time']:.2f} seconds</p>
</div>
""", unsafe_allow_html=True)
else:
st.info("No verification history available.")
# --- Tab Info ---
with tabs[2]:
st.markdown("""
### ℹ️ About SemViQA
**Author:** [**Nam V. Nguyen**](https://github.com/DAVID-NGUYEN-S16), [**Dien X. Tran**](https://github.com/xndien2004), Thanh T. Tran, Anh T. Hoang, Tai V. Duong, Di T. Le, Phuc-Lu Le
SemViQA is a cutting-edge Vietnamese fact-checking system designed to combat misinformation. It leverages semantic-based evidence retrieval (SER) and a two-step verdict classification (TVC) approach to verify claims efficiently. By combining TF-IDF with a Question Answering Token Classifier (QATC), SemViQA improves accuracy while reducing inference time. Achieving state-of-the-art performance, it has set new benchmarks on ViWikiFC (80.82% accuracy) and ISE-DSC01 (78.97% accuracy) datasets. With its 7x speed boost, SemViQA is a powerful tool for ensuring information integrity in the Vietnamese language.
#### 🔍 How to Use
1. Enter the claim to verify
2. Enter context or reference text
3. Adjust parameters in Settings if needed
4. Click Verify button
#### ⚙️ Parameters
- **Confidence Threshold:** Adjust sensitivity in evidence search
- **Length Ratio Threshold:** An important parameter in the evidence retrieval process. It determines how text segments are processed when compared to the length of the claim to be verified.
- **CPU Threads:** Adjust processing performance
#### 📊 Results
- **SUPPORTED:** The claim is supported by evidence
- **REFUTED:** The claim is refuted by evidence
- **NEI:** Not enough information to conclude
""") |