Segizu's picture
dataset_faces
9b396e8
raw
history blame
2.77 kB
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(force_download=True)
dataset = load_dataset("Segizu/dataset_faces", download_config=download_config)
if "train" in dataset:
dataset = dataset["train"]
# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
img_rgb = img.convert("RGB")
img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
return np.array(img_resized)
# 📦 Construir base de datos de embeddings
def build_database():
database = []
for i, item in enumerate(dataset):
try:
img = item["image"]
img_processed = preprocess_image(img)
embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
database.append((f"image_{i}", img, embedding))
except Exception as e:
print(f"❌ No se pudo procesar imagen {i}: {e}")
return database
# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
try:
img_processed = preprocess_image(uploaded_image)
query_embedding = DeepFace.represent(
img_path=img_processed,
model_name="Facenet",
enforce_detection=False
)[0]["embedding"]
except:
return [], "⚠ No se detectó un rostro válido en la imagen."
similarities = []
for name, db_img, embedding in database:
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
sim_score = 1 / (1 + dist)
similarities.append((sim_score, name, db_img))
similarities.sort(reverse=True)
top_matches = similarities[:]
gallery_items = []
text_summary = ""
for sim, name, img in top_matches:
caption = f"{name} - Similitud: {sim:.2f}"
gallery_items.append((img, caption))
text_summary += caption + "\n"
return gallery_items, text_summary
# ⚙️ Inicializar base
database = build_database()
# 🎛️ Interfaz Gradio
demo = gr.Interface(
fn=find_similar_faces,
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
outputs=[
gr.Gallery(label="📸 Rostros más similares"),
gr.Textbox(label="🧠 Similitud", lines=6)
],
title="🔍 Buscador de Rostros con DeepFace",
description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)."
)
demo.launch()