File size: 2,765 Bytes
7823cea
bf687e5
7823cea
 
fff17ea
b78ec6d
 
bf687e5
fff17ea
 
9b396e8
17df602
 
bf687e5
59cebaf
 
 
 
 
 
fff17ea
7823cea
 
17df602
 
 
59cebaf
fff17ea
59cebaf
fff17ea
 
 
59cebaf
17df602
 
7823cea
 
fff17ea
7823cea
 
59cebaf
fff17ea
59cebaf
fff17ea
 
 
7823cea
 
bf687e5
7823cea
fff17ea
 
 
 
bf687e5
7823cea
d4c09d2
7823cea
bf687e5
7823cea
17df602
7823cea
d771ba3
7823cea
 
 
bf687e5
fff17ea
 
 
 
bf687e5
7823cea
 
bf687e5
f134081
7823cea
bf687e5
7823cea
17df602
bf687e5
8fed1b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
from PIL import Image
import gradio as gr
from deepface import DeepFace
from datasets import load_dataset, DownloadConfig
import os
os.system("rm -rf ~/.cache/huggingface/hub/datasets--Segizu--dataset_faces")

# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
download_config = DownloadConfig(force_download=True)
dataset = load_dataset("Segizu/dataset_faces", download_config=download_config)
if "train" in dataset:
    dataset = dataset["train"]

# 🔄 Preprocesar imagen para Facenet
def preprocess_image(img):
    img_rgb = img.convert("RGB")
    img_resized = img_rgb.resize((160, 160), Image.Resampling.LANCZOS)
    return np.array(img_resized)

# 📦 Construir base de datos de embeddings
def build_database():
    database = []
    for i, item in enumerate(dataset):
        try:
            img = item["image"]
            img_processed = preprocess_image(img)
            embedding = DeepFace.represent(
                img_path=img_processed,
                model_name="Facenet",
                enforce_detection=False
            )[0]["embedding"]
            database.append((f"image_{i}", img, embedding))
        except Exception as e:
            print(f"❌ No se pudo procesar imagen {i}: {e}")
    return database

# 🔍 Buscar rostros similares
def find_similar_faces(uploaded_image):
    try:
        img_processed = preprocess_image(uploaded_image)
        query_embedding = DeepFace.represent(
            img_path=img_processed,
            model_name="Facenet",
            enforce_detection=False
        )[0]["embedding"]
    except:
        return [], "⚠ No se detectó un rostro válido en la imagen."

    similarities = []
    for name, db_img, embedding in database:
        dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
        sim_score = 1 / (1 + dist)
        similarities.append((sim_score, name, db_img))

    similarities.sort(reverse=True)
    top_matches = similarities[:]

    gallery_items = []
    text_summary = ""
    for sim, name, img in top_matches:
        caption = f"{name} - Similitud: {sim:.2f}"
        gallery_items.append((img, caption))
        text_summary += caption + "\n"

    return gallery_items, text_summary

# ⚙️ Inicializar base
database = build_database()

# 🎛️ Interfaz Gradio
demo = gr.Interface(
    fn=find_similar_faces,
    inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
    outputs=[
        gr.Gallery(label="📸 Rostros más similares"),
        gr.Textbox(label="🧠 Similitud", lines=6)
    ],
    title="🔍 Buscador de Rostros con DeepFace",
    description="Sube una imagen y se comparará contra los rostros del dataset alojado en Hugging Face (`Segizu/dataset_faces`)."
)

demo.launch()