Spaces:
Runtime error
Runtime error
update
Browse files
app.py
CHANGED
@@ -2,45 +2,49 @@ import numpy as np
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
-
from datasets import load_dataset
|
6 |
|
7 |
-
# Cargar el dataset de Hugging Face
|
8 |
-
|
|
|
9 |
if "train" in dataset:
|
10 |
dataset = dataset["train"]
|
11 |
|
12 |
-
#
|
13 |
def build_database():
|
14 |
database = []
|
15 |
for i, item in enumerate(dataset):
|
16 |
try:
|
17 |
img = item["image"]
|
18 |
-
# Convertir a RGB y np.array
|
19 |
img_rgb = img.convert("RGB")
|
20 |
img_np = np.array(img_rgb)
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
24 |
except Exception as e:
|
25 |
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
26 |
return database
|
27 |
|
28 |
-
#
|
29 |
-
database = build_database()
|
30 |
-
|
31 |
-
# Comparar imagen cargada con la base
|
32 |
def find_similar_faces(uploaded_image):
|
33 |
try:
|
34 |
img_np = np.array(uploaded_image.convert("RGB"))
|
35 |
-
|
|
|
|
|
|
|
|
|
36 |
except:
|
37 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
38 |
|
39 |
similarities = []
|
40 |
-
for name, db_img,
|
41 |
-
|
42 |
-
|
43 |
-
similarities.append((
|
44 |
|
45 |
similarities.sort(reverse=True)
|
46 |
top_matches = similarities[:5]
|
@@ -54,7 +58,10 @@ def find_similar_faces(uploaded_image):
|
|
54 |
|
55 |
return gallery_items, text_summary
|
56 |
|
57 |
-
#
|
|
|
|
|
|
|
58 |
demo = gr.Interface(
|
59 |
fn=find_similar_faces,
|
60 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|
|
|
2 |
from PIL import Image
|
3 |
import gradio as gr
|
4 |
from deepface import DeepFace
|
5 |
+
from datasets import load_dataset, DownloadConfig
|
6 |
|
7 |
+
# ✅ Cargar el dataset de Hugging Face forzando la descarga limpia
|
8 |
+
download_config = DownloadConfig(force_download=True)
|
9 |
+
dataset = load_dataset("Segizu/dataset_faces", download_config=download_config)
|
10 |
if "train" in dataset:
|
11 |
dataset = dataset["train"]
|
12 |
|
13 |
+
# 📦 Construir base de datos de embeddings
|
14 |
def build_database():
|
15 |
database = []
|
16 |
for i, item in enumerate(dataset):
|
17 |
try:
|
18 |
img = item["image"]
|
|
|
19 |
img_rgb = img.convert("RGB")
|
20 |
img_np = np.array(img_rgb)
|
21 |
+
embedding = DeepFace.represent(
|
22 |
+
img_path=img_np,
|
23 |
+
model_name="Facenet",
|
24 |
+
enforce_detection=False
|
25 |
+
)[0]["embedding"]
|
26 |
+
database.append((f"image_{i}", img_rgb, embedding))
|
27 |
except Exception as e:
|
28 |
print(f"❌ No se pudo procesar imagen {i}: {e}")
|
29 |
return database
|
30 |
|
31 |
+
# 🔍 Buscar rostros similares
|
|
|
|
|
|
|
32 |
def find_similar_faces(uploaded_image):
|
33 |
try:
|
34 |
img_np = np.array(uploaded_image.convert("RGB"))
|
35 |
+
query_embedding = DeepFace.represent(
|
36 |
+
img_path=img_np,
|
37 |
+
model_name="Facenet",
|
38 |
+
enforce_detection=False
|
39 |
+
)[0]["embedding"]
|
40 |
except:
|
41 |
return [], "⚠ No se detectó un rostro válido en la imagen."
|
42 |
|
43 |
similarities = []
|
44 |
+
for name, db_img, embedding in database:
|
45 |
+
dist = np.linalg.norm(np.array(query_embedding) - np.array(embedding))
|
46 |
+
sim_score = 1 / (1 + dist)
|
47 |
+
similarities.append((sim_score, name, db_img))
|
48 |
|
49 |
similarities.sort(reverse=True)
|
50 |
top_matches = similarities[:5]
|
|
|
58 |
|
59 |
return gallery_items, text_summary
|
60 |
|
61 |
+
# ⚙️ Inicializar base
|
62 |
+
database = build_database()
|
63 |
+
|
64 |
+
# 🎛️ Interfaz Gradio
|
65 |
demo = gr.Interface(
|
66 |
fn=find_similar_faces,
|
67 |
inputs=gr.Image(label="📤 Sube una imagen", type="pil"),
|