Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoProcessor, LlavaForConditionalGeneration | |
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, set_global_service_context | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.vector_stores.faiss import FaissVectorStore | |
from llama_index.storage.storage_context import StorageContext | |
import torch | |
from PIL import Image | |
import os | |
# Load LLaVA model and processor | |
model_id = "llava-hf/llava-1.5-7b-hf" | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True) | |
model.to("cuda" if torch.cuda.is_available() else "cpu") | |
# Load documents and build FAISS index | |
documents = SimpleDirectoryReader("docs").load_data() | |
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en") | |
service_context = ServiceContext.from_defaults(embed_model=embed_model) | |
set_global_service_context(service_context) | |
index = VectorStoreIndex.from_documents(documents, service_context=service_context) | |
query_engine = index.as_query_engine() | |
def multimodal_rag(image, question): | |
# Step 1: RAG to retrieve context | |
context = query_engine.query(question) | |
# Step 2: Process with LLaVA | |
prompt = f"Context: {context} | |
Question: {question}" | |
inputs = processor(prompt, image, return_tensors="pt").to(model.device) | |
output = model.generate(**inputs, max_new_tokens=100) | |
answer = processor.decode(output[0], skip_special_tokens=True) | |
return answer | |
demo = gr.Interface( | |
fn=multimodal_rag, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Enter your question") | |
], | |
outputs="text", | |
title="Multimodal RAG with LLaVA and FAISS", | |
description="Upload an image and ask a question. The system retrieves relevant text using FAISS and answers using LLaVA." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |