File size: 1,974 Bytes
7c5b479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

import gradio as gr
from transformers import AutoProcessor, LlavaForConditionalGeneration
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, set_global_service_context
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index.storage.storage_context import StorageContext
import torch
from PIL import Image
import os

# Load LLaVA model and processor
model_id = "llava-hf/llava-1.5-7b-hf"
processor = AutoProcessor.from_pretrained(model_id)
model = LlavaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda" if torch.cuda.is_available() else "cpu")

# Load documents and build FAISS index
documents = SimpleDirectoryReader("docs").load_data()
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en")
service_context = ServiceContext.from_defaults(embed_model=embed_model)
set_global_service_context(service_context)

index = VectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()

def multimodal_rag(image, question):
    # Step 1: RAG to retrieve context
    context = query_engine.query(question)
    
    # Step 2: Process with LLaVA
    prompt = f"Context: {context}

Question: {question}"
    inputs = processor(prompt, image, return_tensors="pt").to(model.device)
    output = model.generate(**inputs, max_new_tokens=100)
    answer = processor.decode(output[0], skip_special_tokens=True)
    return answer

demo = gr.Interface(
    fn=multimodal_rag,
    inputs=[
        gr.Image(type="pil", label="Upload Image"),
        gr.Textbox(label="Enter your question")
    ],
    outputs="text",
    title="Multimodal RAG with LLaVA and FAISS",
    description="Upload an image and ask a question. The system retrieves relevant text using FAISS and answers using LLaVA."
)

if __name__ == "__main__":
    demo.launch()