Spaces:
Running on Zero

tini / llama_diffusion_model.py
Ruurd's picture
Removed custom bidirectional layer as it is not needed when using the Llama attention_masks
b57b92e verified
raw
history blame
4 kB
import torch
import torch.nn as nn
from torch.amp import autocast
from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig
from transformers.models.llama.modeling_llama import LlamaAttention
from peft import LoraConfig, get_peft_model
import os
from typing import Optional, Tuple
hf_token = os.getenv("HF_TOKEN")
class CustomTransformerConfig(PretrainedConfig):
def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0,
max_position_embeddings=4096, masking_type="bidirectional", **kwargs):
super().__init__(**kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.dropout = dropout
self.prediction_chunk = prediction_chunk
self.max_position_embeddings = max_position_embeddings
self.input_size = prediction_chunk
self.masking_type = masking_type
class CustomTransformerModel(PreTrainedModel):
config_class = CustomTransformerConfig
def __init__(self, config):
super().__init__(config)
self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token=hf_token)
self.llama.resize_token_embeddings(config.vocab_size)
for param in self.llama.parameters():
param.requires_grad = False
for param in self.llama.lm_head.parameters():
param.requires_grad = True
lora_config = LoraConfig(
r=512, lora_alpha=512, lora_dropout=0.0,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
bias="none", task_type=None
)
self.llama = get_peft_model(self.llama, lora_config)
self.llama.print_trainable_parameters()
def forward(self, input_ids, labels=None, **kwargs):
batch_size, seq_len = input_ids.shape
assert seq_len == self.config.prediction_chunk, f"Expected input length {self.config.prediction_chunk}, got {seq_len}"
# Build attention mask
device = input_ids.device
masking_type = getattr(self.config, "masking_type", "bidirectional")
if masking_type == 'bidirectional':
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
elif masking_type == 'bidirectional_masked':
base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)
base_mask.fill_diagonal_(False)
elif masking_type == 'unidirectional':
base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device))
else:
raise ValueError(f"Unknown masking type: {self.config.masking_type}")
attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone()
attention_mask = attention_mask.to(dtype=torch.float32) # required for SDPA and Flash attention
with autocast("cuda", dtype=torch.float16):
outputs = self.llama(
input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
use_cache=False,
**kwargs
)
logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size)
loss = None
if labels is not None:
assert labels.shape == (batch_size, seq_len), f"Labels shape mismatch: expected ({batch_size}, {seq_len}), got {labels.shape}"
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits}
def disable_dropout(model):
for name, module in model.named_modules():
if isinstance(module, nn.Dropout):
setattr(model, name, nn.Identity())
return model