import torch import torch.nn as nn from torch.amp import autocast from transformers import AutoModelForCausalLM, PreTrainedModel, PretrainedConfig from transformers.models.llama.modeling_llama import LlamaAttention from peft import LoraConfig, get_peft_model import os from typing import Optional, Tuple hf_token = os.getenv("HF_TOKEN") class CustomTransformerConfig(PretrainedConfig): def __init__(self, vocab_size=128256, hidden_size=4096, num_layers=32, num_heads=32, prediction_chunk=256, dropout=0, max_position_embeddings=4096, masking_type="bidirectional", **kwargs): super().__init__(**kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_layers = num_layers self.num_heads = num_heads self.dropout = dropout self.prediction_chunk = prediction_chunk self.max_position_embeddings = max_position_embeddings self.input_size = prediction_chunk self.masking_type = masking_type class CustomTransformerModel(PreTrainedModel): config_class = CustomTransformerConfig def __init__(self, config): super().__init__(config) self.llama = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B", torch_dtype=torch.float16, device_map="auto", token=hf_token) self.llama.resize_token_embeddings(config.vocab_size) for param in self.llama.parameters(): param.requires_grad = False for param in self.llama.lm_head.parameters(): param.requires_grad = True lora_config = LoraConfig( r=512, lora_alpha=512, lora_dropout=0.0, target_modules=["q_proj", "v_proj", "k_proj", "o_proj"], bias="none", task_type=None ) self.llama = get_peft_model(self.llama, lora_config) self.llama.print_trainable_parameters() def forward(self, input_ids, labels=None, **kwargs): batch_size, seq_len = input_ids.shape assert seq_len == self.config.prediction_chunk, f"Expected input length {self.config.prediction_chunk}, got {seq_len}" # Build attention mask device = input_ids.device masking_type = getattr(self.config, "masking_type", "bidirectional") if masking_type == 'bidirectional': base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) elif masking_type == 'bidirectional_masked': base_mask = torch.ones(seq_len, seq_len, dtype=torch.bool, device=device) base_mask.fill_diagonal_(False) elif masking_type == 'unidirectional': base_mask = torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) else: raise ValueError(f"Unknown masking type: {self.config.masking_type}") attention_mask = base_mask.unsqueeze(0).unsqueeze(1).expand(batch_size, 1, seq_len, seq_len).clone() attention_mask = attention_mask.to(dtype=torch.float32) # required for SDPA and Flash attention with autocast("cuda", dtype=torch.float16): outputs = self.llama( input_ids, attention_mask=attention_mask, output_hidden_states=True, use_cache=False, **kwargs ) logits = outputs.logits[:, :, :self.config.vocab_size].view(batch_size, seq_len, self.config.vocab_size) loss = None if labels is not None: assert labels.shape == (batch_size, seq_len), f"Labels shape mismatch: expected ({batch_size}, {seq_len}), got {labels.shape}" loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) return {"loss": loss, "logits": logits} if loss is not None else {"logits": logits} def disable_dropout(model): for name, module in model.named_modules(): if isinstance(module, nn.Dropout): setattr(model, name, nn.Identity()) return model