Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
import json | |
import time | |
from transformers import AutoTokenizer | |
from llama_diffusion_model import CustomTransformerModel, CustomTransformerConfig, disable_dropout | |
import os | |
hf_token = os.getenv("HF_TOKEN") | |
# --- Load tokenizer --- | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B", use_fast=True, token=hf_token) | |
vocab_size = len(tokenizer) | |
pad_token = tokenizer.pad_token_id or tokenizer.eos_token_id | |
eot_token_id = tokenizer.eos_token_id | |
assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False) | |
# --- Load token probabilities --- | |
with open("token_probabilities.json") as f: | |
token_probs_dict = json.load(f) | |
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32) | |
def load_model(): | |
config = CustomTransformerConfig(vocab_size=vocab_size) | |
model = CustomTransformerModel(config) | |
model.load_state_dict(torch.hub.load_state_dict_from_url( | |
"https://huggingface.co/Ruurd/tini_model/resolve/main/diffusion-model.pth", | |
map_location="cuda", | |
headers={"Authorization": f"Bearer {hf_token}"} | |
)) | |
model = disable_dropout(model) | |
model.to("cuda") | |
model.eval() | |
return model | |
rng = np.random.default_rng() | |
# --- Utility Functions --- | |
def decode_tokens_safe(token_ids): | |
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ") | |
def find_answer_start(input_ids, marker_ids): | |
for i in range(len(input_ids) - len(marker_ids) + 1): | |
if input_ids[i:i + len(marker_ids)] == marker_ids: | |
return i + len(marker_ids) | |
return None | |
def get_noising_schedule(i, max_it, sharpness=5.0): | |
x = i / max_it | |
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness)) | |
def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0): | |
noised = input_ids.copy() | |
answer_len = len(input_ids) - answer_start | |
num_to_noise = int(threshold * answer_len) | |
if num_to_noise > 0: | |
indices = rng.choice(np.arange(answer_start, len(input_ids)), size=num_to_noise, replace=False) | |
mixed_probs = token_probabilities.copy() | |
mixed_probs[eot_token_id] *= eot_weight | |
mixed_probs /= mixed_probs.sum() | |
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs) | |
for idx, val in zip(indices, noise): | |
noised[idx] = val | |
return noised | |
def generate_diffusion_text(model, input_ids, answer_start): | |
with torch.no_grad(): | |
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device) | |
logits = model(input_ids=input_tensor)["logits"] | |
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze() | |
probs = torch.clamp(probs, min=1e-8, max=1.0) | |
sampled = torch.multinomial(probs, num_samples=1).squeeze().tolist() | |
return input_ids[:answer_start] + sampled[answer_start:] | |
# --- Inference Wrapper --- | |
def diffusion_chat(question, eot_weight, max_it, sharpness, model): | |
placeholder = "What do you know about the city of New York?" | |
if question.strip() == "": | |
question = placeholder | |
prompt = f"User: {question}\nAssistant:" | |
input_ids = tokenizer.encode(prompt, add_special_tokens=False) | |
answer_start = find_answer_start(input_ids, assistant_marker_ids) | |
if answer_start is None: | |
yield "Error: Could not find Assistant marker in input." | |
return | |
if len(input_ids) < 256: | |
input_ids += [pad_token] * (256 - len(input_ids)) | |
else: | |
input_ids = input_ids[:256] | |
ori_input_tokens = input_ids | |
current_tokens = noisify_answer(ori_input_tokens, answer_start, threshold=1.0, eot_weight=eot_weight) | |
prev_decoded_tokens = [] | |
last_tokens = [] | |
for i in range(max_it): | |
generated_tokens = generate_diffusion_text(model, current_tokens, answer_start) | |
current_tokens = generated_tokens | |
decoded_ids = current_tokens[answer_start:] | |
decoded_tokens = tokenizer.convert_ids_to_tokens(decoded_ids) | |
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] | |
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else [] | |
if filtered_prev_tokens: | |
highlighted = [] | |
for tok_new, tok_old in zip(filtered_tokens, filtered_prev_tokens): | |
if tok_new != tok_old: | |
highlighted.append(f'<span style="color:green">{tokenizer.convert_tokens_to_string([tok_new])}</span>') | |
else: | |
highlighted.append(tokenizer.convert_tokens_to_string([tok_new])) | |
else: | |
highlighted = [tokenizer.convert_tokens_to_string([tok]) for tok in filtered_tokens] | |
prev_decoded_tokens = decoded_tokens | |
yield f"<b>Iteration {i+1}/{max_it} (running):</b><br>" + "".join(highlighted) | |
last_tokens.append(generated_tokens) | |
if len(last_tokens) > 3: | |
last_tokens.pop(0) | |
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]: | |
yield f"<b>Stopped early after {i+1} iterations.</b>" | |
break | |
threshold = get_noising_schedule(i, max_it, sharpness=sharpness) | |
current_tokens = noisify_answer(generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight) | |
time.sleep(0.01) | |
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:]) | |
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] | |
final_output = tokenizer.convert_tokens_to_string(final_tokens) | |
yield f"<b>Final Output (after {i+1} iterations):</b><br>" + final_output | |
# --- Gradio Interface --- | |
model_state = gr.State(load_model()) | |
demo = gr.Interface( | |
fn=diffusion_chat, | |
inputs=[ | |
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"), | |
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"), | |
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"), | |
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"), | |
model_state | |
], | |
outputs=gr.HTML(label="Diffusion Output"), | |
title="Diffusion Language Model Chat", | |
description="This interface runs a diffusion-based language model to generate answers progressively." | |
) | |
demo.launch() | |