Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,579 Bytes
7252f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import gradio as gr
import torch
import numpy as np
import json
import time
from transformers import AutoTokenizer
from llama_diffusion_model import CustomTransformerModel, CustomTransformerConfig, disable_dropout
import os
hf_token = os.getenv("HF_TOKEN")
# --- Load tokenizer ---
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B", use_fast=True, token=hf_token)
vocab_size = len(tokenizer)
pad_token = tokenizer.pad_token_id or tokenizer.eos_token_id
eot_token_id = tokenizer.eos_token_id
assistant_marker_ids = tokenizer.encode("Assistant:", add_special_tokens=False)
# --- Load token probabilities ---
with open("token_probabilities.json") as f:
token_probs_dict = json.load(f)
token_probabilities = np.array([token_probs_dict[str(i)] for i in range(len(token_probs_dict))], dtype=np.float32)
def load_model():
config = CustomTransformerConfig(vocab_size=vocab_size)
model = CustomTransformerModel(config)
model.load_state_dict(torch.hub.load_state_dict_from_url(
"https://huggingface.co/Ruurd/tini_model/resolve/main/diffusion-model.pth",
map_location="cuda",
headers={"Authorization": f"Bearer {hf_token}"}
))
model = disable_dropout(model)
model.to("cuda")
model.eval()
return model
rng = np.random.default_rng()
# --- Utility Functions ---
def decode_tokens_safe(token_ids):
return tokenizer.decode(token_ids, skip_special_tokens=True).replace("\n", " ")
def find_answer_start(input_ids, marker_ids):
for i in range(len(input_ids) - len(marker_ids) + 1):
if input_ids[i:i + len(marker_ids)] == marker_ids:
return i + len(marker_ids)
return None
def get_noising_schedule(i, max_it, sharpness=5.0):
x = i / max_it
return (np.exp(-sharpness * x) - np.exp(-sharpness)) / (1 - np.exp(-sharpness))
def noisify_answer(input_ids, answer_start, threshold=1.0, eot_weight=1.0):
noised = input_ids.copy()
answer_len = len(input_ids) - answer_start
num_to_noise = int(threshold * answer_len)
if num_to_noise > 0:
indices = rng.choice(np.arange(answer_start, len(input_ids)), size=num_to_noise, replace=False)
mixed_probs = token_probabilities.copy()
mixed_probs[eot_token_id] *= eot_weight
mixed_probs /= mixed_probs.sum()
noise = rng.choice(np.arange(vocab_size), size=num_to_noise, p=mixed_probs)
for idx, val in zip(indices, noise):
noised[idx] = val
return noised
def generate_diffusion_text(model, input_ids, answer_start):
with torch.no_grad():
input_tensor = torch.tensor([input_ids], dtype=torch.long).to(model.device)
logits = model(input_ids=input_tensor)["logits"]
probs = torch.nn.functional.softmax(logits, dim=-1).squeeze()
probs = torch.clamp(probs, min=1e-8, max=1.0)
sampled = torch.multinomial(probs, num_samples=1).squeeze().tolist()
return input_ids[:answer_start] + sampled[answer_start:]
# --- Inference Wrapper ---
def diffusion_chat(question, eot_weight, max_it, sharpness, model):
placeholder = "What do you know about the city of New York?"
if question.strip() == "":
question = placeholder
prompt = f"User: {question}\nAssistant:"
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
answer_start = find_answer_start(input_ids, assistant_marker_ids)
if answer_start is None:
yield "Error: Could not find Assistant marker in input."
return
if len(input_ids) < 256:
input_ids += [pad_token] * (256 - len(input_ids))
else:
input_ids = input_ids[:256]
ori_input_tokens = input_ids
current_tokens = noisify_answer(ori_input_tokens, answer_start, threshold=1.0, eot_weight=eot_weight)
prev_decoded_tokens = []
last_tokens = []
for i in range(max_it):
generated_tokens = generate_diffusion_text(model, current_tokens, answer_start)
current_tokens = generated_tokens
decoded_ids = current_tokens[answer_start:]
decoded_tokens = tokenizer.convert_ids_to_tokens(decoded_ids)
filtered_tokens = [tok for tok in decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
filtered_prev_tokens = [tok for tok in prev_decoded_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id] if prev_decoded_tokens else []
if filtered_prev_tokens:
highlighted = []
for tok_new, tok_old in zip(filtered_tokens, filtered_prev_tokens):
if tok_new != tok_old:
highlighted.append(f'<span style="color:green">{tokenizer.convert_tokens_to_string([tok_new])}</span>')
else:
highlighted.append(tokenizer.convert_tokens_to_string([tok_new]))
else:
highlighted = [tokenizer.convert_tokens_to_string([tok]) for tok in filtered_tokens]
prev_decoded_tokens = decoded_tokens
yield f"<b>Iteration {i+1}/{max_it} (running):</b><br>" + "".join(highlighted)
last_tokens.append(generated_tokens)
if len(last_tokens) > 3:
last_tokens.pop(0)
if len(last_tokens) == 3 and last_tokens[0] == last_tokens[1] == last_tokens[2]:
yield f"<b>Stopped early after {i+1} iterations.</b>"
break
threshold = get_noising_schedule(i, max_it, sharpness=sharpness)
current_tokens = noisify_answer(generated_tokens, answer_start, threshold=threshold, eot_weight=eot_weight)
time.sleep(0.01)
final_tokens = tokenizer.convert_ids_to_tokens(current_tokens[answer_start:])
final_tokens = [tok for tok in final_tokens if tokenizer.convert_tokens_to_ids(tok) != eot_token_id]
final_output = tokenizer.convert_tokens_to_string(final_tokens)
yield f"<b>Final Output (after {i+1} iterations):</b><br>" + final_output
# --- Gradio Interface ---
model_state = gr.State(load_model())
demo = gr.Interface(
fn=diffusion_chat,
inputs=[
gr.Textbox(label="User Question", lines=2, placeholder="What do you know about the city of New York?"),
gr.Slider(0, 1, value=0.4, step=0.05, label="↓ = longer answers (EOT weight)"),
gr.Slider(1, 512, value=64, step=1, label="↑ = more iterations"),
gr.Slider(1.0, 20.0, value=5.0, step=0.5, label="↓ = more noising (sharpness)"),
model_state
],
outputs=gr.HTML(label="Diffusion Output"),
title="Diffusion Language Model Chat",
description="This interface runs a diffusion-based language model to generate answers progressively."
)
demo.launch()
|