radiolm / app.py
Ruurd's picture
Remove one chat_with_model function
719a76f
raw
history blame
4.99 kB
import os
import torch
import time
import gradio as gr
import spaces
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
# @spaces.GPU
# def chat_with_model(messages):
# global current_model, current_tokenizer
# if current_model is None or current_tokenizer is None:
# yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
# return
# current_model.to("cuda").half()
# prompt = format_prompt(messages)
# inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
# streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=True)
# generation_kwargs = dict(
# **inputs,
# max_new_tokens=256,
# do_sample=True,
# streamer=streamer
# )
# # Launch generation in a background thread
# thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
# thread.start()
# output_text = ""
# messages = messages.copy()
# messages.append({"role": "assistant", "content": ""})
# for new_text in streamer:
# output_text += new_text
# messages[-1]["content"] = output_text
# yield messages
# current_model.to("cpu")
# torch.cuda.empty_cache()
# Globals
current_model = None
current_tokenizer = None
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
global current_model, current_tokenizer
token = os.getenv("HF_TOKEN")
progress(0, desc="Loading tokenizer...")
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
progress(0.5, desc="Loading model...")
current_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16,
device_map="cpu", # loaded to CPU initially
use_auth_token=token
)
progress(1, desc="Model ready.")
return f"{model_name} loaded and ready!"
# Format conversation as plain text
def format_prompt(messages):
prompt = ""
for msg in messages:
role = msg["role"]
if role == "user":
prompt += f"User: {msg['content'].strip()}\n"
elif role == "assistant":
prompt += f"Assistant: {msg['content'].strip()}\n"
prompt += "Assistant:"
return prompt
def add_user_message(user_input, history):
return "", history + [{"role": "user", "content": user_input}]
# Available models
model_choices = [
"meta-llama/Llama-3.2-3B-Instruct",
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"google/gemma-7b"
]
# UI
with gr.Blocks() as demo:
gr.Markdown("## Clinical Chatbot (Streaming) — LLaMA, DeepSeek, Gemma")
default_model = gr.State("meta-llama/Llama-3.2-3B-Instruct")
@spaces.GPU
def chat_with_model(messages):
global current_model, current_tokenizer
if current_model is None or current_tokenizer is None:
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
return
current_model = current_model.to("cuda").half()
prompt = format_prompt(messages)
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
output_ids = []
messages = messages.copy()
messages.append({"role": "assistant", "content": ""})
for token_id in current_model.generate(
**inputs,
max_new_tokens=256,
do_sample=True,
return_dict_in_generate=True,
output_scores=False
).sequences[0][inputs['input_ids'].shape[-1]:]: # skip input tokens
output_ids.append(token_id.item())
decoded = current_tokenizer.decode(output_ids, skip_special_tokens=False)
if output_ids[-1] == current_tokenizer.eos_token_id:
current_model.to("cpu")
torch.cuda.empty_cache()
return
messages[-1]["content"] = decoded
yield messages
current_model.to("cpu")
torch.cuda.empty_cache()
return
with gr.Row():
model_selector = gr.Dropdown(choices=model_choices, label="Select Model")
model_status = gr.Textbox(label="Model Status", interactive=False)
chatbot = gr.Chatbot(label="Chat", type="messages")
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
clear = gr.Button("Clear")
# Load default model on startup
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
# Load selected model manually
model_selector.change(fn=load_model_on_selection, inputs=model_selector, outputs=model_status)
# Submit message + stream model response
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
chat_with_model, chatbot, chatbot
)
# Clear chat
clear.click(lambda: [], None, chatbot, queue=False)
demo.launch()