File size: 17,248 Bytes
7936e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b69329e
7936e2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import os
import re
import PyPDF2
import docx
import googleapiclient.discovery
import nltk
from nltk.tokenize import sent_tokenize
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
from youtube_transcript_api import YouTubeTranscriptApi
import streamlit as st
import pandas as pd
import random
from io import StringIO
import logging

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Download necessary NLTK resources
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')

class QuizGenerator:
    def __init__(self):
        # Initialize the summarizer and question generator models
        self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
        
        # Load question generation model
        self.qg_model = AutoModelForSeq2SeqLM.from_pretrained("valhalla/t5-base-qg-hl")
        self.qg_tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qg-hl")
        
        # Initialize MCQ generation components
        self.qa_model = pipeline('question-answering', model='distilbert-base-cased-distilled-squad')
    
    def extract_text_from_pdf(self, pdf_file):
        """Extract text from a PDF file."""
        try:
            text = ""
            pdf_reader = PyPDF2.PdfReader(pdf_file)
            for page in pdf_reader.pages:
                text += page.extract_text() + "\n"
            return text
        except Exception as e:
            logger.error(f"Error extracting text from PDF: {e}")
            return ""

    def extract_text_from_docx(self, docx_file):
        """Extract text from a DOCX file."""
        try:
            doc = docx.Document(docx_file)
            text = ""
            for para in doc.paragraphs:
                text += para.text + "\n"
            return text
        except Exception as e:
            logger.error(f"Error extracting text from DOCX: {e}")
            return ""

    def extract_text_from_txt(self, txt_file):
        """Extract text from a TXT file."""
        try:
            return txt_file.read().decode('utf-8')
        except Exception as e:
            logger.error(f"Error extracting text from TXT: {e}")
            return ""

    def get_youtube_transcript(self, video_id):
        """Extract transcript from a YouTube video."""
        try:
            transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
            transcript = ' '.join([item['text'] for item in transcript_list])
            return transcript
        except Exception as e:
            logger.error(f"Error getting YouTube transcript: {e}")
            return ""

    def summarize_text(self, text, max_length=1000):
        """Summarize long text to make processing more efficient."""
        if len(text) <= max_length:
            return text
            
        chunks = self._split_text_into_chunks(text, max_length=3000)
        summaries = []
        
        for chunk in chunks:
            if len(chunk) < 100:  # Skip chunks that are too small
                continue
                
            summary = self.summarizer(chunk, max_length=300, min_length=100, do_sample=False)
            summaries.append(summary[0]['summary_text'])
            
        return " ".join(summaries)

    def _split_text_into_chunks(self, text, max_length=3000):
        """Split text into chunks of max_length characters."""
        sentences = sent_tokenize(text)
        chunks = []
        current_chunk = ""
        
        for sentence in sentences:
            if len(current_chunk) + len(sentence) <= max_length:
                current_chunk += " " + sentence
            else:
                chunks.append(current_chunk.strip())
                current_chunk = sentence
                
        if current_chunk:
            chunks.append(current_chunk.strip())
            
        return chunks

    def generate_questions(self, text, num_questions=5):
        """Generate questions based on the input text."""
        try:
            # Summarize text if it's too long
            processed_text = self.summarize_text(text)
            
            # Split into sentences
            sentences = sent_tokenize(processed_text)
            
            questions = []
            random.shuffle(sentences)  # Randomize to get different questions each time
            
            for sentence in sentences[:min(num_questions * 3, len(sentences))]:  # Process more sentences than needed
                if len(sentence.split()) < 5:  # Skip short sentences
                    continue
                    
                # Format for the question generation model
                input_text = f"generate question: {sentence}"
                
                # Generate question
                inputs = self.qg_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
                outputs = self.qg_model.generate(inputs, max_length=64, num_beams=4, early_stopping=True)
                question = self.qg_tokenizer.decode(outputs[0], skip_special_tokens=True)
                
                # Use QA model to get answer
                qa_input = {
                    'question': question,
                    'context': processed_text
                }
                answer = self.qa_model(qa_input)
                
                if answer['score'] > 0.1:  # Only keep questions with reasonable confidence
                    questions.append({
                        'question': question,
                        'answer': answer['answer'],
                        'context': sentence
                    })
                    
                if len(questions) >= num_questions:
                    break
            
            return questions
            
        except Exception as e:
            logger.error(f"Error generating questions: {e}")
            return []

    def generate_mcq(self, questions, num_options=4):
        """Convert open-ended questions to multiple-choice questions."""
        mcqs = []
        
        for q in questions:
            correct_answer = q['answer']
            
            # Generate distractors (incorrect options)
            distractors = self._generate_distractors(q['context'], correct_answer, num_options-1)
            
            # Create options list with correct answer
            options = distractors + [correct_answer]
            random.shuffle(options)
            
            # Find position of correct answer
            correct_index = options.index(correct_answer)
            
            mcqs.append({
                'question': q['question'],
                'options': options,
                'correct_answer': correct_answer,
                'correct_index': correct_index
            })
            
        return mcqs
    
    def _generate_distractors(self, context, correct_answer, num_distractors=3):
        """Generate plausible but incorrect answers."""
        # Simple approach - extract other nouns from the text
        words = nltk.word_tokenize(context)
        pos_tags = nltk.pos_tag(words)
        
        # Extract nouns and named entities
        nouns = [word for word, pos in pos_tags if pos in ('NN', 'NNS', 'NNP', 'NNPS') and word.lower() != correct_answer.lower()]
        
        # Deduplicate and filter
        unique_nouns = list(set(nouns))
        distractors = [noun for noun in unique_nouns if len(noun) > 2]
        
        # If we don't have enough distractors, add some generic ones
        generic_distractors = ["None of the above", "Cannot be determined", "All of the above"]
        
        # Combine and return required number
        combined = list(distractors) + generic_distractors
        random.shuffle(combined)
        
        return combined[:num_distractors]

    def generate_true_false(self, text, num_questions=5):
        """Generate true/false questions from text."""
        try:
            # Generate factual statements first
            questions = self.generate_questions(text, num_questions)
            true_false = []
            
            for q in questions:
                # Original statement is true
                true_statement = {
                    'statement': q['context'],
                    'is_true': True
                }
                
                # Create a false version by negating or changing key parts
                words = q['context'].split()
                if len(words) > 4:
                    # Simple modification: replace a word or add a negation
                    change_idx = random.randint(0, len(words)-1)
                    words[change_idx] = random.choice(["not", "never", "rarely", "incorrectly"]) + " " + words[change_idx]
                    false_statement = {
                        'statement': " ".join(words),
                        'is_true': False
                    }
                    
                    true_false.extend([true_statement, false_statement])
            
            # Shuffle and return required number
            random.shuffle(true_false)
            return true_false[:num_questions]
            
        except Exception as e:
            logger.error(f"Error generating true/false questions: {e}")
            return []

def create_streamlit_app():
    st.set_page_config(page_title="QuizWhiz", page_icon="📚", layout="wide")
    
    st.title("QuizWhiz - Comprehensive Quiz Generator")
    st.subheader("Generate quizzes from various sources: text, documents, and YouTube videos")
    
    quiz_gen = QuizGenerator()
    
    # Sidebar for options
    st.sidebar.header("Quiz Options")
    quiz_type = st.sidebar.selectbox(
        "Question Type",
        ["Multiple Choice", "True/False", "Open-Ended"]
    )
    
    num_questions = st.sidebar.slider("Number of Questions", 3, 20, 5)
    
    # Source selection
    st.header("Select Your Content Source")
    source_type = st.radio(
        "Content Source",
        ["Text Input", "Document Upload", "YouTube Video", "Topic/Subject"]
    )
    
    text_content = ""
    
    # Handle different source types
    if source_type == "Text Input":
        text_content = st.text_area("Enter your text content here:", height=250)
        
    elif source_type == "Document Upload":
        uploaded_file = st.file_uploader("Upload your document", type=['pdf', 'docx', 'txt'])
        
        if uploaded_file is not None:
            st.success(f"File '{uploaded_file.name}' uploaded successfully!")
            
            # Extract text based on file type
            if uploaded_file.name.endswith('.pdf'):
                text_content = quiz_gen.extract_text_from_pdf(uploaded_file)
            elif uploaded_file.name.endswith('.docx'):
                text_content = quiz_gen.extract_text_from_docx(uploaded_file)
            elif uploaded_file.name.endswith('.txt'):
                text_content = quiz_gen.extract_text_from_txt(uploaded_file)
                
            # Show text preview
            if text_content:
                with st.expander("Preview Extracted Text"):
                    st.text(text_content[:500] + "..." if len(text_content) > 500 else text_content)
            else:
                st.error("Failed to extract text from the document.")
                
    elif source_type == "YouTube Video":
        youtube_url = st.text_input("Enter YouTube Video URL:")
        
        if youtube_url:
            # Extract video ID from URL
            video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
            
            if video_id_match:
                video_id = video_id_match.group(1)
                
                # Show video embed
                st.video(youtube_url)
                
                # Extract transcript
                with st.spinner("Extracting video transcript..."):
                    text_content = quiz_gen.get_youtube_transcript(video_id)
                
                if text_content:
                    with st.expander("Preview Transcript"):
                        st.text(text_content[:500] + "..." if len(text_content) > 500 else text_content)
                else:
                    st.error("Failed to extract transcript. This video might not have captions.")
            else:
                st.error("Invalid YouTube URL. Please enter a valid URL.")
                
    elif source_type == "Topic/Subject":
        topic = st.text_input("Enter a topic or subject:")
        
        if topic:
            # For this demo, we'll use a predefined text about the topic
            # In a real app, you might use an API to fetch content about the topic
            st.info(f"Generating quiz about: {topic}")
            text_content = f"The topic of {topic} is a fascinating subject to explore. " \
                          f"There are many important concepts and facts related to {topic} " \
                          f"that make it an essential area of study. Understanding {topic} " \
                          f"requires careful consideration of its key principles."
                          
            # Placeholder for a real implementation that would gather information about the topic
            st.warning("In a complete implementation, this would gather information about the topic from reliable sources.")
    
    # Generate Quiz Button
    if text_content:
        if st.button("Generate Quiz"):
            with st.spinner("Generating quiz questions..."):
                if quiz_type == "Multiple Choice":
                    # Generate questions first
                    questions = quiz_gen.generate_questions(text_content, num_questions)
                    # Convert to MCQs
                    mcqs = quiz_gen.generate_mcq(questions)
                    
                    if mcqs:
                        st.success(f"Generated {len(mcqs)} multiple choice questions!")
                        
                        # Display questions
                        for i, q in enumerate(mcqs, 1):
                            st.subheader(f"Question {i}: {q['question']}")
                            
                            # Display options
                            option_letters = ['A', 'B', 'C', 'D']
                            for j, option in enumerate(q['options']):
                                st.write(f"{option_letters[j]}. {option}")
                            
                            # Reveal answer in expander
                            with st.expander("Reveal Answer"):
                                st.write(f"Correct Answer: {option_letters[q['correct_index']]}. {q['correct_answer']}")
                                
                            st.divider()
                    else:
                        st.error("Failed to generate questions. Try with different content.")
                        
                elif quiz_type == "True/False":
                    tf_questions = quiz_gen.generate_true_false(text_content, num_questions)
                    
                    if tf_questions:
                        st.success(f"Generated {len(tf_questions)} true/false questions!")
                        
                        # Display questions
                        for i, q in enumerate(tf_questions, 1):
                            st.subheader(f"Question {i}: True or False?")
                            st.write(q['statement'])
                            
                            # Reveal answer
                            with st.expander("Reveal Answer"):
                                st.write(f"Answer: {'True' if q['is_true'] else 'False'}")
                                
                            st.divider()
                    else:
                        st.error("Failed to generate true/false questions. Try with different content.")
                        
                elif quiz_type == "Open-Ended":
                    questions = quiz_gen.generate_questions(text_content, num_questions)
                    
                    if questions:
                        st.success(f"Generated {len(questions)} open-ended questions!")
                        
                        # Display questions
                        for i, q in enumerate(questions, 1):
                            st.subheader(f"Question {i}: {q['question']}")
                            
                            # Reveal answer
                            with st.expander("Reveal Answer"):
                                st.write(f"Suggested Answer: {q['answer']}")
                                st.write(f"Context: {q['context']}")
                                
                            st.divider()
                    else:
                        st.error("Failed to generate questions. Try with different content.")
    else:
        st.info("Please provide content or select a source to generate a quiz.")
    
    # Footer
    st.sidebar.divider()
    st.sidebar.caption("QuizWhiz - Powered by AI")
    st.sidebar.caption("© 2025 QuizWhiz Technologies")

if __name__ == "__main__":
    create_streamlit_app()