Rupesx007 commited on
Commit
7936e2f
·
verified ·
1 Parent(s): 39569a4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +410 -0
app.py ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import PyPDF2
4
+ import docx
5
+ import googleapiclient.discovery
6
+ import nltk
7
+ from nltk.tokenize import sent_tokenize
8
+ from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer
9
+ from youtube_transcript_api import YouTubeTranscriptApi
10
+ import streamlit as st
11
+ import pandas as pd
12
+ import random
13
+ from io import StringIO
14
+ import logging
15
+
16
+ # Setup logging
17
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
18
+ logger = logging.getLogger(__name__)
19
+
20
+ # Download necessary NLTK resources
21
+ nltk.download('punkt')
22
+ nltk.download('averaged_perceptron_tagger')
23
+
24
+ class QuizGenerator:
25
+ def __init__(self):
26
+ # Initialize the summarizer and question generator models
27
+ self.summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
28
+
29
+ # Load question generation model
30
+ self.qg_model = AutoModelForSeq2SeqGeneration.from_pretrained("valhalla/t5-base-qg-hl")
31
+ self.qg_tokenizer = AutoTokenizer.from_pretrained("valhalla/t5-base-qg-hl")
32
+
33
+ # Initialize MCQ generation components
34
+ self.qa_model = pipeline('question-answering', model='distilbert-base-cased-distilled-squad')
35
+
36
+ def extract_text_from_pdf(self, pdf_file):
37
+ """Extract text from a PDF file."""
38
+ try:
39
+ text = ""
40
+ pdf_reader = PyPDF2.PdfReader(pdf_file)
41
+ for page in pdf_reader.pages:
42
+ text += page.extract_text() + "\n"
43
+ return text
44
+ except Exception as e:
45
+ logger.error(f"Error extracting text from PDF: {e}")
46
+ return ""
47
+
48
+ def extract_text_from_docx(self, docx_file):
49
+ """Extract text from a DOCX file."""
50
+ try:
51
+ doc = docx.Document(docx_file)
52
+ text = ""
53
+ for para in doc.paragraphs:
54
+ text += para.text + "\n"
55
+ return text
56
+ except Exception as e:
57
+ logger.error(f"Error extracting text from DOCX: {e}")
58
+ return ""
59
+
60
+ def extract_text_from_txt(self, txt_file):
61
+ """Extract text from a TXT file."""
62
+ try:
63
+ return txt_file.read().decode('utf-8')
64
+ except Exception as e:
65
+ logger.error(f"Error extracting text from TXT: {e}")
66
+ return ""
67
+
68
+ def get_youtube_transcript(self, video_id):
69
+ """Extract transcript from a YouTube video."""
70
+ try:
71
+ transcript_list = YouTubeTranscriptApi.get_transcript(video_id)
72
+ transcript = ' '.join([item['text'] for item in transcript_list])
73
+ return transcript
74
+ except Exception as e:
75
+ logger.error(f"Error getting YouTube transcript: {e}")
76
+ return ""
77
+
78
+ def summarize_text(self, text, max_length=1000):
79
+ """Summarize long text to make processing more efficient."""
80
+ if len(text) <= max_length:
81
+ return text
82
+
83
+ chunks = self._split_text_into_chunks(text, max_length=3000)
84
+ summaries = []
85
+
86
+ for chunk in chunks:
87
+ if len(chunk) < 100: # Skip chunks that are too small
88
+ continue
89
+
90
+ summary = self.summarizer(chunk, max_length=300, min_length=100, do_sample=False)
91
+ summaries.append(summary[0]['summary_text'])
92
+
93
+ return " ".join(summaries)
94
+
95
+ def _split_text_into_chunks(self, text, max_length=3000):
96
+ """Split text into chunks of max_length characters."""
97
+ sentences = sent_tokenize(text)
98
+ chunks = []
99
+ current_chunk = ""
100
+
101
+ for sentence in sentences:
102
+ if len(current_chunk) + len(sentence) <= max_length:
103
+ current_chunk += " " + sentence
104
+ else:
105
+ chunks.append(current_chunk.strip())
106
+ current_chunk = sentence
107
+
108
+ if current_chunk:
109
+ chunks.append(current_chunk.strip())
110
+
111
+ return chunks
112
+
113
+ def generate_questions(self, text, num_questions=5):
114
+ """Generate questions based on the input text."""
115
+ try:
116
+ # Summarize text if it's too long
117
+ processed_text = self.summarize_text(text)
118
+
119
+ # Split into sentences
120
+ sentences = sent_tokenize(processed_text)
121
+
122
+ questions = []
123
+ random.shuffle(sentences) # Randomize to get different questions each time
124
+
125
+ for sentence in sentences[:min(num_questions * 3, len(sentences))]: # Process more sentences than needed
126
+ if len(sentence.split()) < 5: # Skip short sentences
127
+ continue
128
+
129
+ # Format for the question generation model
130
+ input_text = f"generate question: {sentence}"
131
+
132
+ # Generate question
133
+ inputs = self.qg_tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
134
+ outputs = self.qg_model.generate(inputs, max_length=64, num_beams=4, early_stopping=True)
135
+ question = self.qg_tokenizer.decode(outputs[0], skip_special_tokens=True)
136
+
137
+ # Use QA model to get answer
138
+ qa_input = {
139
+ 'question': question,
140
+ 'context': processed_text
141
+ }
142
+ answer = self.qa_model(qa_input)
143
+
144
+ if answer['score'] > 0.1: # Only keep questions with reasonable confidence
145
+ questions.append({
146
+ 'question': question,
147
+ 'answer': answer['answer'],
148
+ 'context': sentence
149
+ })
150
+
151
+ if len(questions) >= num_questions:
152
+ break
153
+
154
+ return questions
155
+
156
+ except Exception as e:
157
+ logger.error(f"Error generating questions: {e}")
158
+ return []
159
+
160
+ def generate_mcq(self, questions, num_options=4):
161
+ """Convert open-ended questions to multiple-choice questions."""
162
+ mcqs = []
163
+
164
+ for q in questions:
165
+ correct_answer = q['answer']
166
+
167
+ # Generate distractors (incorrect options)
168
+ distractors = self._generate_distractors(q['context'], correct_answer, num_options-1)
169
+
170
+ # Create options list with correct answer
171
+ options = distractors + [correct_answer]
172
+ random.shuffle(options)
173
+
174
+ # Find position of correct answer
175
+ correct_index = options.index(correct_answer)
176
+
177
+ mcqs.append({
178
+ 'question': q['question'],
179
+ 'options': options,
180
+ 'correct_answer': correct_answer,
181
+ 'correct_index': correct_index
182
+ })
183
+
184
+ return mcqs
185
+
186
+ def _generate_distractors(self, context, correct_answer, num_distractors=3):
187
+ """Generate plausible but incorrect answers."""
188
+ # Simple approach - extract other nouns from the text
189
+ words = nltk.word_tokenize(context)
190
+ pos_tags = nltk.pos_tag(words)
191
+
192
+ # Extract nouns and named entities
193
+ nouns = [word for word, pos in pos_tags if pos in ('NN', 'NNS', 'NNP', 'NNPS') and word.lower() != correct_answer.lower()]
194
+
195
+ # Deduplicate and filter
196
+ unique_nouns = list(set(nouns))
197
+ distractors = [noun for noun in unique_nouns if len(noun) > 2]
198
+
199
+ # If we don't have enough distractors, add some generic ones
200
+ generic_distractors = ["None of the above", "Cannot be determined", "All of the above"]
201
+
202
+ # Combine and return required number
203
+ combined = list(distractors) + generic_distractors
204
+ random.shuffle(combined)
205
+
206
+ return combined[:num_distractors]
207
+
208
+ def generate_true_false(self, text, num_questions=5):
209
+ """Generate true/false questions from text."""
210
+ try:
211
+ # Generate factual statements first
212
+ questions = self.generate_questions(text, num_questions)
213
+ true_false = []
214
+
215
+ for q in questions:
216
+ # Original statement is true
217
+ true_statement = {
218
+ 'statement': q['context'],
219
+ 'is_true': True
220
+ }
221
+
222
+ # Create a false version by negating or changing key parts
223
+ words = q['context'].split()
224
+ if len(words) > 4:
225
+ # Simple modification: replace a word or add a negation
226
+ change_idx = random.randint(0, len(words)-1)
227
+ words[change_idx] = random.choice(["not", "never", "rarely", "incorrectly"]) + " " + words[change_idx]
228
+ false_statement = {
229
+ 'statement': " ".join(words),
230
+ 'is_true': False
231
+ }
232
+
233
+ true_false.extend([true_statement, false_statement])
234
+
235
+ # Shuffle and return required number
236
+ random.shuffle(true_false)
237
+ return true_false[:num_questions]
238
+
239
+ except Exception as e:
240
+ logger.error(f"Error generating true/false questions: {e}")
241
+ return []
242
+
243
+ def create_streamlit_app():
244
+ st.set_page_config(page_title="QuizWhiz", page_icon="📚", layout="wide")
245
+
246
+ st.title("QuizWhiz - Comprehensive Quiz Generator")
247
+ st.subheader("Generate quizzes from various sources: text, documents, and YouTube videos")
248
+
249
+ quiz_gen = QuizGenerator()
250
+
251
+ # Sidebar for options
252
+ st.sidebar.header("Quiz Options")
253
+ quiz_type = st.sidebar.selectbox(
254
+ "Question Type",
255
+ ["Multiple Choice", "True/False", "Open-Ended"]
256
+ )
257
+
258
+ num_questions = st.sidebar.slider("Number of Questions", 3, 20, 5)
259
+
260
+ # Source selection
261
+ st.header("Select Your Content Source")
262
+ source_type = st.radio(
263
+ "Content Source",
264
+ ["Text Input", "Document Upload", "YouTube Video", "Topic/Subject"]
265
+ )
266
+
267
+ text_content = ""
268
+
269
+ # Handle different source types
270
+ if source_type == "Text Input":
271
+ text_content = st.text_area("Enter your text content here:", height=250)
272
+
273
+ elif source_type == "Document Upload":
274
+ uploaded_file = st.file_uploader("Upload your document", type=['pdf', 'docx', 'txt'])
275
+
276
+ if uploaded_file is not None:
277
+ st.success(f"File '{uploaded_file.name}' uploaded successfully!")
278
+
279
+ # Extract text based on file type
280
+ if uploaded_file.name.endswith('.pdf'):
281
+ text_content = quiz_gen.extract_text_from_pdf(uploaded_file)
282
+ elif uploaded_file.name.endswith('.docx'):
283
+ text_content = quiz_gen.extract_text_from_docx(uploaded_file)
284
+ elif uploaded_file.name.endswith('.txt'):
285
+ text_content = quiz_gen.extract_text_from_txt(uploaded_file)
286
+
287
+ # Show text preview
288
+ if text_content:
289
+ with st.expander("Preview Extracted Text"):
290
+ st.text(text_content[:500] + "..." if len(text_content) > 500 else text_content)
291
+ else:
292
+ st.error("Failed to extract text from the document.")
293
+
294
+ elif source_type == "YouTube Video":
295
+ youtube_url = st.text_input("Enter YouTube Video URL:")
296
+
297
+ if youtube_url:
298
+ # Extract video ID from URL
299
+ video_id_match = re.search(r'(?:v=|\/)([0-9A-Za-z_-]{11}).*', youtube_url)
300
+
301
+ if video_id_match:
302
+ video_id = video_id_match.group(1)
303
+
304
+ # Show video embed
305
+ st.video(youtube_url)
306
+
307
+ # Extract transcript
308
+ with st.spinner("Extracting video transcript..."):
309
+ text_content = quiz_gen.get_youtube_transcript(video_id)
310
+
311
+ if text_content:
312
+ with st.expander("Preview Transcript"):
313
+ st.text(text_content[:500] + "..." if len(text_content) > 500 else text_content)
314
+ else:
315
+ st.error("Failed to extract transcript. This video might not have captions.")
316
+ else:
317
+ st.error("Invalid YouTube URL. Please enter a valid URL.")
318
+
319
+ elif source_type == "Topic/Subject":
320
+ topic = st.text_input("Enter a topic or subject:")
321
+
322
+ if topic:
323
+ # For this demo, we'll use a predefined text about the topic
324
+ # In a real app, you might use an API to fetch content about the topic
325
+ st.info(f"Generating quiz about: {topic}")
326
+ text_content = f"The topic of {topic} is a fascinating subject to explore. " \
327
+ f"There are many important concepts and facts related to {topic} " \
328
+ f"that make it an essential area of study. Understanding {topic} " \
329
+ f"requires careful consideration of its key principles."
330
+
331
+ # Placeholder for a real implementation that would gather information about the topic
332
+ st.warning("In a complete implementation, this would gather information about the topic from reliable sources.")
333
+
334
+ # Generate Quiz Button
335
+ if text_content:
336
+ if st.button("Generate Quiz"):
337
+ with st.spinner("Generating quiz questions..."):
338
+ if quiz_type == "Multiple Choice":
339
+ # Generate questions first
340
+ questions = quiz_gen.generate_questions(text_content, num_questions)
341
+ # Convert to MCQs
342
+ mcqs = quiz_gen.generate_mcq(questions)
343
+
344
+ if mcqs:
345
+ st.success(f"Generated {len(mcqs)} multiple choice questions!")
346
+
347
+ # Display questions
348
+ for i, q in enumerate(mcqs, 1):
349
+ st.subheader(f"Question {i}: {q['question']}")
350
+
351
+ # Display options
352
+ option_letters = ['A', 'B', 'C', 'D']
353
+ for j, option in enumerate(q['options']):
354
+ st.write(f"{option_letters[j]}. {option}")
355
+
356
+ # Reveal answer in expander
357
+ with st.expander("Reveal Answer"):
358
+ st.write(f"Correct Answer: {option_letters[q['correct_index']]}. {q['correct_answer']}")
359
+
360
+ st.divider()
361
+ else:
362
+ st.error("Failed to generate questions. Try with different content.")
363
+
364
+ elif quiz_type == "True/False":
365
+ tf_questions = quiz_gen.generate_true_false(text_content, num_questions)
366
+
367
+ if tf_questions:
368
+ st.success(f"Generated {len(tf_questions)} true/false questions!")
369
+
370
+ # Display questions
371
+ for i, q in enumerate(tf_questions, 1):
372
+ st.subheader(f"Question {i}: True or False?")
373
+ st.write(q['statement'])
374
+
375
+ # Reveal answer
376
+ with st.expander("Reveal Answer"):
377
+ st.write(f"Answer: {'True' if q['is_true'] else 'False'}")
378
+
379
+ st.divider()
380
+ else:
381
+ st.error("Failed to generate true/false questions. Try with different content.")
382
+
383
+ elif quiz_type == "Open-Ended":
384
+ questions = quiz_gen.generate_questions(text_content, num_questions)
385
+
386
+ if questions:
387
+ st.success(f"Generated {len(questions)} open-ended questions!")
388
+
389
+ # Display questions
390
+ for i, q in enumerate(questions, 1):
391
+ st.subheader(f"Question {i}: {q['question']}")
392
+
393
+ # Reveal answer
394
+ with st.expander("Reveal Answer"):
395
+ st.write(f"Suggested Answer: {q['answer']}")
396
+ st.write(f"Context: {q['context']}")
397
+
398
+ st.divider()
399
+ else:
400
+ st.error("Failed to generate questions. Try with different content.")
401
+ else:
402
+ st.info("Please provide content or select a source to generate a quiz.")
403
+
404
+ # Footer
405
+ st.sidebar.divider()
406
+ st.sidebar.caption("QuizWhiz - Powered by AI")
407
+ st.sidebar.caption("© 2025 QuizWhiz Technologies")
408
+
409
+ if __name__ == "__main__":
410
+ create_streamlit_app()