Spaces:
Build error
Build error
File size: 8,002 Bytes
18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 2e83ef9 18a68e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import pymupdf4llm
import pandas as pd
import tempfile
from typing import Dict, Any, Optional, List
# Import Langchain document loaders
from langchain_community.document_loaders import (
PyMuPDFLoader,
UnstructuredWordDocumentLoader,
UnstructuredPowerPointLoader,
UnstructuredExcelLoader,
UnstructuredMarkdownLoader,
UnstructuredHTMLLoader,
UnstructuredXMLLoader,
UnstructuredEmailLoader,
UnstructuredFileLoader,
UnstructuredEPubLoader,
CSVLoader,
TextLoader
)
def get_processor_for_file(file_path: str) -> Optional[callable]:
"""
Determine the appropriate processor function for the given file type
"""
file_extension = os.path.splitext(file_path)[1].lower()
# Map file extensions to specific processor functions
processors = {
".pdf": process_pdf,
".docx": process_docx,
".doc": process_docx,
".pptx": process_pptx,
".ppt": process_pptx,
".xlsx": process_xlsx,
".xls": process_xlsx,
".md": process_markdown,
".html": process_html,
".htm": process_html,
".xml": process_xml,
".msg": process_email,
".eml": process_email,
".epub": process_epub,
".txt": process_text,
".csv": process_csv,
".rtf": process_text,
# Code files
".py": process_text,
".js": process_text,
".java": process_text,
".ts": process_text,
".tsx": process_text,
".jsx": process_text,
".c": process_text,
".cpp": process_text,
".h": process_text,
".cs": process_text,
".rb": process_text,
".go": process_text,
".rs": process_text,
".php": process_text,
".sql": process_text,
".css": process_text,
}
return processors.get(file_extension, process_generic)
def process_document(file_path: str) -> Optional[str]:
"""
Process a document using the appropriate processor based on file type
"""
processor = get_processor_for_file(file_path)
if processor:
return processor(file_path)
return None
def process_pdf(file_path: str) -> str:
"""
Process PDF documents using pymupdf4llm for better PDF handling
"""
# For PDFs, we'll still use pymupdf4llm as it handles tables and images better
pdf_processor = pymupdf4llm.PdfProcessor(file_path)
# Extract text, tables, and images
extracted_text = pdf_processor.extract_text()
extracted_tables = pdf_processor.extract_tables()
extracted_images = pdf_processor.extract_images()
# Combine extracted content
combined_content = []
if extracted_text:
combined_content.append(extracted_text)
if extracted_tables:
for table in extracted_tables:
combined_content.append(str(table))
if extracted_images:
combined_content.append(f"Extracted {len(extracted_images)} images.")
return "\n\n".join(combined_content)
def process_docx(file_path: str) -> str:
"""
Process DOCX documents using Langchain's UnstructuredWordDocumentLoader
"""
loader = UnstructuredWordDocumentLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_pptx(file_path: str) -> str:
"""
Process PPTX documents using Langchain's UnstructuredPowerPointLoader
"""
loader = UnstructuredPowerPointLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_xlsx(file_path: str) -> str:
"""
Process XLSX documents using Langchain's UnstructuredExcelLoader
"""
loader = UnstructuredExcelLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_markdown(file_path: str) -> str:
"""
Process Markdown documents using Langchain's UnstructuredMarkdownLoader
"""
loader = UnstructuredMarkdownLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_html(file_path: str) -> str:
"""
Process HTML documents using Langchain's UnstructuredHTMLLoader
"""
loader = UnstructuredHTMLLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_xml(file_path: str) -> str:
"""
Process XML documents using Langchain's UnstructuredXMLLoader
"""
loader = UnstructuredXMLLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_email(file_path: str) -> str:
"""
Process email documents using Langchain's UnstructuredEmailLoader
"""
loader = UnstructuredEmailLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_text(file_path: str) -> str:
"""
Process text documents using Langchain's TextLoader
"""
loader = TextLoader(file_path, encoding="utf-8")
try:
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
except UnicodeDecodeError:
# Try with a different encoding if utf-8 fails
loader = TextLoader(file_path, encoding="latin-1")
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_csv(file_path: str) -> str:
"""
Process CSV documents using Langchain's CSVLoader
"""
loader = CSVLoader(file_path)
docs = loader.load()
# Create a formatted string representation of the CSV data
rows = []
if docs:
# Get column names from metadata if available
if hasattr(docs[0], 'metadata') and 'columns' in docs[0].metadata:
rows.append(",".join(docs[0].metadata['columns']))
# Add content rows
for doc in docs:
rows.append(doc.page_content)
return "\n".join(rows)
def process_epub(file_path: str) -> str:
"""
Process EPUB documents using Langchain's UnstructuredEPubLoader
"""
loader = UnstructuredEPubLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
def process_generic(file_path: str) -> str:
"""
Generic document processor using Langchain's UnstructuredFileLoader
"""
try:
loader = UnstructuredFileLoader(file_path)
docs = loader.load()
texts = [doc.page_content for doc in docs if doc.page_content]
combined_text = "\n\n".join(texts)
return combined_text
except Exception as e:
# Fall back to basic text processing if UnstructuredFileLoader fails
try:
with open(file_path, 'r', encoding='utf-8') as f:
return f.read()
except Exception:
# Try with a different encoding if utf-8 fails
try:
with open(file_path, 'r', encoding='latin-1') as f:
return f.read()
except Exception as e2:
raise Exception(f"Could not process file: {str(e)} / {str(e2)}") |