Spaces:
Build error
Build error
Update Ingestion/ingest.py
Browse files- Ingestion/ingest.py +110 -107
Ingestion/ingest.py
CHANGED
@@ -4,18 +4,21 @@ import pandas as pd
|
|
4 |
import tempfile
|
5 |
from typing import Dict, Any, Optional, List
|
6 |
|
7 |
-
# Import
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
def get_processor_for_file(file_path: str) -> Optional[callable]:
|
21 |
"""
|
@@ -23,7 +26,7 @@ def get_processor_for_file(file_path: str) -> Optional[callable]:
|
|
23 |
"""
|
24 |
file_extension = os.path.splitext(file_path)[1].lower()
|
25 |
|
26 |
-
# Map file extensions to specific
|
27 |
processors = {
|
28 |
".pdf": process_pdf,
|
29 |
".docx": process_docx,
|
@@ -40,7 +43,7 @@ def get_processor_for_file(file_path: str) -> Optional[callable]:
|
|
40 |
".eml": process_email,
|
41 |
".epub": process_epub,
|
42 |
".txt": process_text,
|
43 |
-
".csv":
|
44 |
".rtf": process_text,
|
45 |
|
46 |
# Code files
|
@@ -75,183 +78,183 @@ def process_document(file_path: str) -> Optional[str]:
|
|
75 |
|
76 |
def process_pdf(file_path: str) -> str:
|
77 |
"""
|
78 |
-
Process PDF documents using
|
79 |
"""
|
80 |
-
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
infer_table_structure=True,
|
93 |
-
chunking_strategy="by_title",
|
94 |
-
max_characters=4000,
|
95 |
-
new_after_n_chars=3800,
|
96 |
-
combine_text_under_n_chars=2000,
|
97 |
-
)
|
98 |
-
except Exception as e:
|
99 |
-
# Fall back to fast mode if hi_res fails
|
100 |
-
elements = partition_pdf(
|
101 |
-
filename=file_path,
|
102 |
-
strategy="fast",
|
103 |
-
chunking_strategy="by_title",
|
104 |
-
max_characters=4000,
|
105 |
-
new_after_n_chars=3800,
|
106 |
-
combine_text_under_n_chars=2000,
|
107 |
-
)
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
|
115 |
def process_docx(file_path: str) -> str:
|
116 |
"""
|
117 |
-
Process DOCX documents using
|
118 |
"""
|
119 |
-
|
120 |
-
|
121 |
-
chunking_strategy="by_title",
|
122 |
-
max_characters=4000,
|
123 |
-
new_after_n_chars=3800,
|
124 |
-
combine_text_under_n_chars=2000,
|
125 |
-
)
|
126 |
|
127 |
-
texts = [
|
128 |
combined_text = "\n\n".join(texts)
|
129 |
|
130 |
return combined_text
|
131 |
|
132 |
def process_pptx(file_path: str) -> str:
|
133 |
"""
|
134 |
-
Process PPTX documents using
|
135 |
"""
|
136 |
-
|
137 |
-
|
138 |
-
)
|
139 |
|
140 |
-
texts = [
|
141 |
combined_text = "\n\n".join(texts)
|
142 |
|
143 |
return combined_text
|
144 |
|
145 |
def process_xlsx(file_path: str) -> str:
|
146 |
"""
|
147 |
-
Process XLSX documents using
|
148 |
"""
|
149 |
-
|
150 |
-
|
151 |
-
)
|
152 |
|
153 |
-
texts = [
|
154 |
combined_text = "\n\n".join(texts)
|
155 |
|
156 |
return combined_text
|
157 |
|
158 |
def process_markdown(file_path: str) -> str:
|
159 |
"""
|
160 |
-
Process Markdown documents using
|
161 |
"""
|
162 |
-
|
163 |
-
|
164 |
-
)
|
165 |
|
166 |
-
texts = [
|
167 |
combined_text = "\n\n".join(texts)
|
168 |
|
169 |
return combined_text
|
170 |
|
171 |
def process_html(file_path: str) -> str:
|
172 |
"""
|
173 |
-
Process HTML documents using
|
174 |
"""
|
175 |
-
|
176 |
-
|
177 |
-
)
|
178 |
|
179 |
-
texts = [
|
180 |
combined_text = "\n\n".join(texts)
|
181 |
|
182 |
return combined_text
|
183 |
|
184 |
def process_xml(file_path: str) -> str:
|
185 |
"""
|
186 |
-
Process XML documents using
|
187 |
"""
|
188 |
-
|
189 |
-
|
190 |
-
)
|
191 |
|
192 |
-
texts = [
|
193 |
combined_text = "\n\n".join(texts)
|
194 |
|
195 |
return combined_text
|
196 |
|
197 |
def process_email(file_path: str) -> str:
|
198 |
"""
|
199 |
-
Process email documents using
|
200 |
"""
|
201 |
-
|
202 |
-
|
203 |
-
)
|
204 |
|
205 |
-
texts = [
|
206 |
combined_text = "\n\n".join(texts)
|
207 |
|
208 |
return combined_text
|
209 |
|
210 |
def process_text(file_path: str) -> str:
|
211 |
"""
|
212 |
-
Process text documents using
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
"""
|
214 |
-
|
215 |
-
|
216 |
-
chunking_strategy="by_title",
|
217 |
-
max_characters=4000,
|
218 |
-
new_after_n_chars=3800,
|
219 |
-
combine_text_under_n_chars=2000,
|
220 |
-
)
|
221 |
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
return
|
226 |
|
227 |
def process_epub(file_path: str) -> str:
|
228 |
"""
|
229 |
-
Process EPUB documents using
|
230 |
"""
|
231 |
-
|
232 |
-
|
233 |
-
)
|
234 |
|
235 |
-
texts = [
|
236 |
combined_text = "\n\n".join(texts)
|
237 |
|
238 |
return combined_text
|
239 |
|
240 |
def process_generic(file_path: str) -> str:
|
241 |
"""
|
242 |
-
Generic document processor using
|
243 |
"""
|
244 |
try:
|
245 |
-
|
246 |
-
|
247 |
-
)
|
248 |
|
249 |
-
texts = [
|
250 |
combined_text = "\n\n".join(texts)
|
251 |
|
252 |
return combined_text
|
253 |
except Exception as e:
|
254 |
-
# Fall back to basic text processing if
|
255 |
try:
|
256 |
with open(file_path, 'r', encoding='utf-8') as f:
|
257 |
return f.read()
|
|
|
4 |
import tempfile
|
5 |
from typing import Dict, Any, Optional, List
|
6 |
|
7 |
+
# Import Langchain document loaders
|
8 |
+
from langchain_community.document_loaders import (
|
9 |
+
PyMuPDFLoader,
|
10 |
+
UnstructuredWordDocumentLoader,
|
11 |
+
UnstructuredPowerPointLoader,
|
12 |
+
UnstructuredExcelLoader,
|
13 |
+
UnstructuredMarkdownLoader,
|
14 |
+
UnstructuredHTMLLoader,
|
15 |
+
UnstructuredXMLLoader,
|
16 |
+
UnstructuredEmailLoader,
|
17 |
+
UnstructuredFileLoader,
|
18 |
+
UnstructuredEPubLoader,
|
19 |
+
CSVLoader,
|
20 |
+
TextLoader
|
21 |
+
)
|
22 |
|
23 |
def get_processor_for_file(file_path: str) -> Optional[callable]:
|
24 |
"""
|
|
|
26 |
"""
|
27 |
file_extension = os.path.splitext(file_path)[1].lower()
|
28 |
|
29 |
+
# Map file extensions to specific processor functions
|
30 |
processors = {
|
31 |
".pdf": process_pdf,
|
32 |
".docx": process_docx,
|
|
|
43 |
".eml": process_email,
|
44 |
".epub": process_epub,
|
45 |
".txt": process_text,
|
46 |
+
".csv": process_csv,
|
47 |
".rtf": process_text,
|
48 |
|
49 |
# Code files
|
|
|
78 |
|
79 |
def process_pdf(file_path: str) -> str:
|
80 |
"""
|
81 |
+
Process PDF documents using pymupdf4llm for better PDF handling
|
82 |
"""
|
83 |
+
# For PDFs, we'll still use pymupdf4llm as it handles tables and images better
|
84 |
+
pdf_processor = pymupdf4llm.PdfProcessor(file_path)
|
85 |
|
86 |
+
# Extract text, tables, and images
|
87 |
+
extracted_text = pdf_processor.extract_text()
|
88 |
+
extracted_tables = pdf_processor.extract_tables()
|
89 |
+
extracted_images = pdf_processor.extract_images()
|
90 |
+
|
91 |
+
# Combine extracted content
|
92 |
+
combined_content = []
|
93 |
+
|
94 |
+
if extracted_text:
|
95 |
+
combined_content.append(extracted_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
if extracted_tables:
|
98 |
+
for table in extracted_tables:
|
99 |
+
combined_content.append(str(table))
|
100 |
|
101 |
+
if extracted_images:
|
102 |
+
combined_content.append(f"Extracted {len(extracted_images)} images.")
|
103 |
+
|
104 |
+
return "\n\n".join(combined_content)
|
105 |
|
106 |
def process_docx(file_path: str) -> str:
|
107 |
"""
|
108 |
+
Process DOCX documents using Langchain's UnstructuredWordDocumentLoader
|
109 |
"""
|
110 |
+
loader = UnstructuredWordDocumentLoader(file_path)
|
111 |
+
docs = loader.load()
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
114 |
combined_text = "\n\n".join(texts)
|
115 |
|
116 |
return combined_text
|
117 |
|
118 |
def process_pptx(file_path: str) -> str:
|
119 |
"""
|
120 |
+
Process PPTX documents using Langchain's UnstructuredPowerPointLoader
|
121 |
"""
|
122 |
+
loader = UnstructuredPowerPointLoader(file_path)
|
123 |
+
docs = loader.load()
|
|
|
124 |
|
125 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
126 |
combined_text = "\n\n".join(texts)
|
127 |
|
128 |
return combined_text
|
129 |
|
130 |
def process_xlsx(file_path: str) -> str:
|
131 |
"""
|
132 |
+
Process XLSX documents using Langchain's UnstructuredExcelLoader
|
133 |
"""
|
134 |
+
loader = UnstructuredExcelLoader(file_path)
|
135 |
+
docs = loader.load()
|
|
|
136 |
|
137 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
138 |
combined_text = "\n\n".join(texts)
|
139 |
|
140 |
return combined_text
|
141 |
|
142 |
def process_markdown(file_path: str) -> str:
|
143 |
"""
|
144 |
+
Process Markdown documents using Langchain's UnstructuredMarkdownLoader
|
145 |
"""
|
146 |
+
loader = UnstructuredMarkdownLoader(file_path)
|
147 |
+
docs = loader.load()
|
|
|
148 |
|
149 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
150 |
combined_text = "\n\n".join(texts)
|
151 |
|
152 |
return combined_text
|
153 |
|
154 |
def process_html(file_path: str) -> str:
|
155 |
"""
|
156 |
+
Process HTML documents using Langchain's UnstructuredHTMLLoader
|
157 |
"""
|
158 |
+
loader = UnstructuredHTMLLoader(file_path)
|
159 |
+
docs = loader.load()
|
|
|
160 |
|
161 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
162 |
combined_text = "\n\n".join(texts)
|
163 |
|
164 |
return combined_text
|
165 |
|
166 |
def process_xml(file_path: str) -> str:
|
167 |
"""
|
168 |
+
Process XML documents using Langchain's UnstructuredXMLLoader
|
169 |
"""
|
170 |
+
loader = UnstructuredXMLLoader(file_path)
|
171 |
+
docs = loader.load()
|
|
|
172 |
|
173 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
174 |
combined_text = "\n\n".join(texts)
|
175 |
|
176 |
return combined_text
|
177 |
|
178 |
def process_email(file_path: str) -> str:
|
179 |
"""
|
180 |
+
Process email documents using Langchain's UnstructuredEmailLoader
|
181 |
"""
|
182 |
+
loader = UnstructuredEmailLoader(file_path)
|
183 |
+
docs = loader.load()
|
|
|
184 |
|
185 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
186 |
combined_text = "\n\n".join(texts)
|
187 |
|
188 |
return combined_text
|
189 |
|
190 |
def process_text(file_path: str) -> str:
|
191 |
"""
|
192 |
+
Process text documents using Langchain's TextLoader
|
193 |
+
"""
|
194 |
+
loader = TextLoader(file_path, encoding="utf-8")
|
195 |
+
try:
|
196 |
+
docs = loader.load()
|
197 |
+
|
198 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
199 |
+
combined_text = "\n\n".join(texts)
|
200 |
+
|
201 |
+
return combined_text
|
202 |
+
except UnicodeDecodeError:
|
203 |
+
# Try with a different encoding if utf-8 fails
|
204 |
+
loader = TextLoader(file_path, encoding="latin-1")
|
205 |
+
docs = loader.load()
|
206 |
+
|
207 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
208 |
+
combined_text = "\n\n".join(texts)
|
209 |
+
|
210 |
+
return combined_text
|
211 |
+
|
212 |
+
def process_csv(file_path: str) -> str:
|
213 |
+
"""
|
214 |
+
Process CSV documents using Langchain's CSVLoader
|
215 |
"""
|
216 |
+
loader = CSVLoader(file_path)
|
217 |
+
docs = loader.load()
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
+
# Create a formatted string representation of the CSV data
|
220 |
+
rows = []
|
221 |
+
if docs:
|
222 |
+
# Get column names from metadata if available
|
223 |
+
if hasattr(docs[0], 'metadata') and 'columns' in docs[0].metadata:
|
224 |
+
rows.append(",".join(docs[0].metadata['columns']))
|
225 |
+
|
226 |
+
# Add content rows
|
227 |
+
for doc in docs:
|
228 |
+
rows.append(doc.page_content)
|
229 |
|
230 |
+
return "\n".join(rows)
|
231 |
|
232 |
def process_epub(file_path: str) -> str:
|
233 |
"""
|
234 |
+
Process EPUB documents using Langchain's UnstructuredEPubLoader
|
235 |
"""
|
236 |
+
loader = UnstructuredEPubLoader(file_path)
|
237 |
+
docs = loader.load()
|
|
|
238 |
|
239 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
240 |
combined_text = "\n\n".join(texts)
|
241 |
|
242 |
return combined_text
|
243 |
|
244 |
def process_generic(file_path: str) -> str:
|
245 |
"""
|
246 |
+
Generic document processor using Langchain's UnstructuredFileLoader
|
247 |
"""
|
248 |
try:
|
249 |
+
loader = UnstructuredFileLoader(file_path)
|
250 |
+
docs = loader.load()
|
|
|
251 |
|
252 |
+
texts = [doc.page_content for doc in docs if doc.page_content]
|
253 |
combined_text = "\n\n".join(texts)
|
254 |
|
255 |
return combined_text
|
256 |
except Exception as e:
|
257 |
+
# Fall back to basic text processing if UnstructuredFileLoader fails
|
258 |
try:
|
259 |
with open(file_path, 'r', encoding='utf-8') as f:
|
260 |
return f.read()
|