Spaces:
Paused
Paused
import os | |
import sys | |
import gradio as gr | |
from multiprocessing import freeze_support | |
import importlib | |
import inspect | |
import json | |
# Fix path to include src | |
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) | |
# Reload TxAgent from txagent.py | |
import txagent.txagent | |
importlib.reload(txagent.txagent) | |
from txagent.txagent import TxAgent | |
# Debug info | |
print(">>> TxAgent loaded from:", inspect.getfile(TxAgent)) | |
print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat")) | |
# Env vars | |
current_dir = os.path.abspath(os.path.dirname(__file__)) | |
os.environ["MKL_THREADING_LAYER"] = "GNU" | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
# Model config | |
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" | |
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" | |
new_tool_files = { | |
"new_tool": os.path.join(current_dir, "data", "new_tool.json") | |
} | |
# Sample questions | |
question_examples = [ | |
["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"], | |
["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] | |
] | |
# Helper: format assistant responses in collapsible panels | |
def format_collapsible(content): | |
if isinstance(content, (dict, list)): | |
try: | |
formatted = json.dumps(content, indent=2) | |
except Exception: | |
formatted = str(content) | |
else: | |
formatted = str(content) | |
return ( | |
"<details style='border: 1px solid #ccc; padding: 8px; margin-top: 8px;'>" | |
"<summary style='font-weight: bold;'>Answer</summary>" | |
f"<pre style='white-space: pre-wrap;'>{formatted}</pre>" | |
"</details>" | |
) | |
# === UI setup | |
def create_ui(agent): | |
with gr.Blocks() as demo: | |
gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>") | |
gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.") | |
temperature = gr.Slider(0, 1, value=0.3, label="Temperature") | |
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") | |
max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens") | |
max_round = gr.Slider(1, 50, value=30, label="Max Rounds") | |
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) | |
conversation_state = gr.State([]) | |
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages") | |
message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) | |
send_button = gr.Button("Send", variant="primary") | |
# Main handler | |
def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): | |
generator = agent.run_gradio_chat( | |
message=message, | |
history=history, | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
max_token=max_tokens, | |
call_agent=multi_agent, | |
conversation=conversation, | |
max_round=max_round | |
) | |
for update in generator: | |
formatted = [] | |
for m in update: | |
role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant") | |
content = m["content"] if isinstance(m, dict) else getattr(m, "content", "") | |
if role == "assistant": | |
content = format_collapsible(content) | |
formatted.append({"role": role, "content": content}) | |
yield formatted | |
# Button and Enter triggers | |
inputs = [message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round] | |
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) | |
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) | |
gr.Examples(examples=question_examples, inputs=message_input) | |
gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.") | |
return demo | |
# === Entry point | |
if __name__ == "__main__": | |
freeze_support() | |
try: | |
agent = TxAgent( | |
model_name=model_name, | |
rag_model_name=rag_model_name, | |
tool_files_dict=new_tool_files, | |
force_finish=True, | |
enable_checker=True, | |
step_rag_num=10, | |
seed=100, | |
additional_default_tools=[] # Avoid loading unimplemented tools | |
) | |
agent.init_model() | |
if not hasattr(agent, "run_gradio_chat"): | |
raise AttributeError("TxAgent missing run_gradio_chat") | |
demo = create_ui(agent) | |
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) | |
except Exception as e: | |
print(f"β App failed to start: {e}") | |
raise | |