import os import sys import gradio as gr from multiprocessing import freeze_support import importlib import inspect import json # Fix path to include src sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src")) # Reload TxAgent from txagent.py import txagent.txagent importlib.reload(txagent.txagent) from txagent.txagent import TxAgent # Debug info print(">>> TxAgent loaded from:", inspect.getfile(TxAgent)) print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat")) # Env vars current_dir = os.path.abspath(os.path.dirname(__file__)) os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["TOKENIZERS_PARALLELISM"] = "false" # Model config model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B" rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B" new_tool_files = { "new_tool": os.path.join(current_dir, "data", "new_tool.json") } # Sample questions question_examples = [ ["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"], ["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"] ] # Helper: format assistant responses in collapsible panels def format_collapsible(content): if isinstance(content, (dict, list)): try: formatted = json.dumps(content, indent=2) except Exception: formatted = str(content) else: formatted = str(content) return ( "
" "Answer" f"
{formatted}
" "
" ) # === UI setup def create_ui(agent): with gr.Blocks() as demo: gr.Markdown("

TxAgent: Therapeutic Reasoning

") gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.") temperature = gr.Slider(0, 1, value=0.3, label="Temperature") max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens") max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens") max_round = gr.Slider(1, 50, value=30, label="Max Rounds") multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False) conversation_state = gr.State([]) chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages") message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False) send_button = gr.Button("Send", variant="primary") # Main handler def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round): generator = agent.run_gradio_chat( message=message, history=history, temperature=temperature, max_new_tokens=max_new_tokens, max_token=max_tokens, call_agent=multi_agent, conversation=conversation, max_round=max_round ) for update in generator: formatted = [] for m in update: role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant") content = m["content"] if isinstance(m, dict) else getattr(m, "content", "") if role == "assistant": content = format_collapsible(content) formatted.append({"role": role, "content": content}) yield formatted # Button and Enter triggers inputs = [message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round] send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot) message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot) gr.Examples(examples=question_examples, inputs=message_input) gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.") return demo # === Entry point if __name__ == "__main__": freeze_support() try: agent = TxAgent( model_name=model_name, rag_model_name=rag_model_name, tool_files_dict=new_tool_files, force_finish=True, enable_checker=True, step_rag_num=10, seed=100, additional_default_tools=[] # Avoid loading unimplemented tools ) agent.init_model() if not hasattr(agent, "run_gradio_chat"): raise AttributeError("TxAgent missing run_gradio_chat") demo = create_ui(agent) demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True) except Exception as e: print(f"❌ App failed to start: {e}") raise