Spaces:
Paused
Paused
File size: 44,767 Bytes
3e3b258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 |
import gradio as gr
import os
import sys
import json
import gc
import numpy as np
from vllm import LLM, SamplingParams
from jinja2 import Template
from typing import List
import types
from tooluniverse import ToolUniverse
from gradio import ChatMessage
from .toolrag import ToolRAGModel
import torch
# near the top of txagent.py
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
class TxAgent:
def __init__(self, model_name,
rag_model_name,
tool_files_dict=None, # None leads to the default tool files in ToolUniverse
enable_finish=True,
enable_rag=True,
enable_summary=False,
init_rag_num=0,
step_rag_num=10,
summary_mode='step',
summary_skip_last_k=0,
summary_context_length=None,
force_finish=True,
avoid_repeat=True,
seed=None,
enable_checker=False,
enable_chat=False,
additional_default_tools=None,
):
self.model_name = model_name
self.tokenizer = None
self.terminators = None
self.rag_model_name = rag_model_name
self.tool_files_dict = tool_files_dict
self.model = None
self.rag_model = ToolRAGModel(rag_model_name)
self.tooluniverse = None
# self.tool_desc = None
self.prompt_multi_step = "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning and actions based on your reasoning. Typically, your actions will use the provided functions. You have access to the following functions."
self.self_prompt = "Strictly follow the instruction."
self.chat_prompt = "You are helpful assistant to chat with the user."
self.enable_finish = enable_finish
self.enable_rag = enable_rag
self.enable_summary = enable_summary
self.summary_mode = summary_mode
self.summary_skip_last_k = summary_skip_last_k
self.summary_context_length = summary_context_length
self.init_rag_num = init_rag_num
self.step_rag_num = step_rag_num
self.force_finish = force_finish
self.avoid_repeat = avoid_repeat
self.seed = seed
self.enable_checker = enable_checker
self.additional_default_tools = additional_default_tools
self.print_self_values()
def init_model(self):
self.load_models()
self.load_tooluniverse()
self.load_tool_desc_embedding()
def print_self_values(self):
for attr, value in self.__dict__.items():
print(f"{attr}: {value}")
def load_models(self, model_name=None):
if model_name is not None:
if model_name == self.model_name:
return f"The model {model_name} is already loaded."
self.model_name = model_name
self.model = LLM(model=self.model_name)
self.chat_template = Template(self.model.get_tokenizer().chat_template)
self.tokenizer = self.model.get_tokenizer()
return f"Model {model_name} loaded successfully."
def load_tooluniverse(self):
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
self.tooluniverse.load_tools()
special_tools = self.tooluniverse.prepare_tool_prompts(
self.tooluniverse.tool_category_dicts["special_tools"])
self.special_tools_name = [tool['name'] for tool in special_tools]
def load_tool_desc_embedding(self):
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
def rag_infer(self, query, top_k=5):
return self.rag_model.rag_infer(query, top_k)
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
picked_tools_prompt = []
picked_tools_prompt = self.add_special_tools(
picked_tools_prompt, call_agent=call_agent)
if call_agent:
call_agent_level += 1
if call_agent_level >= 2:
call_agent = False
if not call_agent:
picked_tools_prompt += self.tool_RAG(
message=message, rag_num=self.init_rag_num)
return picked_tools_prompt, call_agent_level
def initialize_conversation(self, message, conversation=None, history=None):
if conversation is None:
conversation = []
conversation = self.set_system_prompt(
conversation, self.prompt_multi_step)
if history is not None:
if len(history) == 0:
conversation = []
print("clear conversation successfully")
else:
for i in range(len(history)):
if history[i]['role'] == 'user':
if i-1 >= 0 and history[i-1]['role'] == 'assistant':
conversation.append(
{"role": "assistant", "content": history[i-1]['content']})
conversation.append(
{"role": "user", "content": history[i]['content']})
if i == len(history)-1 and history[i]['role'] == 'assistant':
conversation.append(
{"role": "assistant", "content": history[i]['content']})
conversation.append({"role": "user", "content": message})
return conversation
def tool_RAG(self, message=None,
picked_tool_names=None,
existing_tools_prompt=[],
rag_num=5,
return_call_result=False):
extra_factor = 30 # Factor to retrieve more than rag_num
if picked_tool_names is None:
assert picked_tool_names is not None or message is not None
picked_tool_names = self.rag_infer(
message, top_k=rag_num*extra_factor)
picked_tool_names_no_special = []
for tool in picked_tool_names:
if tool not in self.special_tools_name:
picked_tool_names_no_special.append(tool)
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
picked_tool_names = picked_tool_names_no_special[:rag_num]
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
picked_tools)
if return_call_result:
return picked_tools_prompt, picked_tool_names
return picked_tools_prompt
def add_special_tools(self, tools, call_agent=False):
if self.enable_finish:
tools.append(self.tooluniverse.get_one_tool_by_one_name(
'Finish', return_prompt=True))
print("Finish tool is added")
if call_agent:
tools.append(self.tooluniverse.get_one_tool_by_one_name(
'CallAgent', return_prompt=True))
print("CallAgent tool is added")
else:
if self.enable_rag:
tools.append(self.tooluniverse.get_one_tool_by_one_name(
'Tool_RAG', return_prompt=True))
print("Tool_RAG tool is added")
if self.additional_default_tools is not None:
for each_tool_name in self.additional_default_tools:
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(
each_tool_name, return_prompt=True)
if tool_prompt is not None:
print(f"{each_tool_name} tool is added")
tools.append(tool_prompt)
return tools
def add_finish_tools(self, tools):
tools.append(self.tooluniverse.get_one_tool_by_one_name(
'Finish', return_prompt=True))
print("Finish tool is added")
return tools
def set_system_prompt(self, conversation, sys_prompt):
if len(conversation) == 0:
conversation.append(
{"role": "system", "content": sys_prompt})
else:
conversation[0] = {"role": "system", "content": sys_prompt}
return conversation
def run_function_call(self, fcall_str,
return_message=False,
existing_tools_prompt=None,
message_for_call_agent=None,
call_agent=False,
call_agent_level=None,
temperature=None):
function_call_json, message = self.tooluniverse.extract_function_call_json(
fcall_str, return_message=return_message, verbose=False)
call_results = []
special_tool_call = ''
if function_call_json is not None:
if isinstance(function_call_json, list):
for i in range(len(function_call_json)):
print("\033[94mTool Call:\033[0m", function_call_json[i])
if function_call_json[i]["name"] == 'Finish':
special_tool_call = 'Finish'
break
elif function_call_json[i]["name"] == 'Tool_RAG':
new_tools_prompt, call_result = self.tool_RAG(
message=message,
existing_tools_prompt=existing_tools_prompt,
rag_num=self.step_rag_num,
return_call_result=True)
existing_tools_prompt += new_tools_prompt
elif function_call_json[i]["name"] == 'CallAgent':
if call_agent_level < 2 and call_agent:
solution_plan = function_call_json[i]['arguments']['solution']
full_message = (
message_for_call_agent +
"\nYou must follow the following plan to answer the question: " +
str(solution_plan)
)
call_result = self.run_multistep_agent(
full_message, temperature=temperature,
max_new_tokens=1024, max_token=99999,
call_agent=False, call_agent_level=call_agent_level)
call_result = call_result.split(
'[FinalAnswer]')[-1].strip()
else:
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
else:
call_result = self.tooluniverse.run_one_function(
function_call_json[i])
call_id = self.tooluniverse.call_id_gen()
function_call_json[i]["call_id"] = call_id
print("\033[94mTool Call Result:\033[0m", call_result)
call_results.append({
"role": "tool",
"content": json.dumps({"content": call_result, "call_id": call_id})
})
else:
call_results.append({
"role": "tool",
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
})
revised_messages = [{
"role": "assistant",
"content": message.strip(),
"tool_calls": json.dumps(function_call_json)
}] + call_results
# Yield the final result.
return revised_messages, existing_tools_prompt, special_tool_call
def run_function_call_stream(self, fcall_str,
return_message=False,
existing_tools_prompt=None,
message_for_call_agent=None,
call_agent=False,
call_agent_level=None,
temperature=None,
return_gradio_history=True):
function_call_json, message = self.tooluniverse.extract_function_call_json(
fcall_str, return_message=return_message, verbose=False)
call_results = []
special_tool_call = ''
if return_gradio_history:
gradio_history = []
if function_call_json is not None:
if isinstance(function_call_json, list):
for i in range(len(function_call_json)):
if function_call_json[i]["name"] == 'Finish':
special_tool_call = 'Finish'
break
elif function_call_json[i]["name"] == 'Tool_RAG':
new_tools_prompt, call_result = self.tool_RAG(
message=message,
existing_tools_prompt=existing_tools_prompt,
rag_num=self.step_rag_num,
return_call_result=True)
existing_tools_prompt += new_tools_prompt
elif function_call_json[i]["name"] == 'DirectResponse':
call_result = function_call_json[i]['arguments']['respose']
special_tool_call = 'DirectResponse'
elif function_call_json[i]["name"] == 'RequireClarification':
call_result = function_call_json[i]['arguments']['unclear_question']
special_tool_call = 'RequireClarification'
elif function_call_json[i]["name"] == 'CallAgent':
if call_agent_level < 2 and call_agent:
solution_plan = function_call_json[i]['arguments']['solution']
full_message = (
message_for_call_agent +
"\nYou must follow the following plan to answer the question: " +
str(solution_plan)
)
sub_agent_task = "Sub TxAgent plan: " + \
str(solution_plan)
# When streaming, yield responses as they arrive.
call_result = yield from self.run_gradio_chat(
full_message, history=[], temperature=temperature,
max_new_tokens=1024, max_token=99999,
call_agent=False, call_agent_level=call_agent_level,
conversation=None,
sub_agent_task=sub_agent_task)
call_result = call_result.split(
'[FinalAnswer]')[-1]
else:
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
else:
call_result = self.tooluniverse.run_one_function(
function_call_json[i])
call_id = self.tooluniverse.call_id_gen()
function_call_json[i]["call_id"] = call_id
call_results.append({
"role": "tool",
"content": json.dumps({"content": call_result, "call_id": call_id})
})
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
if function_call_json[i]["name"] == 'Tool_RAG':
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
"title": "🧰 "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
else:
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
"title": "⚒️ "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
else:
call_results.append({
"role": "tool",
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
})
revised_messages = [{
"role": "assistant",
"content": message.strip(),
"tool_calls": json.dumps(function_call_json)
}] + call_results
# Yield the final result.
if return_gradio_history:
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
else:
return revised_messages, existing_tools_prompt, special_tool_call
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
if conversation[-1]['role'] == 'assisant':
conversation.append(
{'role': 'tool', 'content': 'Errors happen during the function call, please come up with the final answer with the current information.'})
finish_tools_prompt = self.add_finish_tools([])
last_outputs_str = self.llm_infer(messages=conversation,
temperature=temperature,
tools=finish_tools_prompt,
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]',
skip_special_tokens=True,
max_new_tokens=max_new_tokens, max_token=max_token)
print(last_outputs_str)
return last_outputs_str
def run_multistep_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int,
max_round: int = 20,
call_agent=False,
call_agent_level=0) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
print("\033[1;32;40mstart\033[0m")
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
call_agent, call_agent_level, message)
conversation = self.initialize_conversation(message)
outputs = []
last_outputs = []
next_round = True
function_call_messages = []
current_round = 0
token_overflow = False
enable_summary = False
last_status = {}
if self.enable_checker:
checker = ReasoningTraceChecker(message, conversation)
try:
while next_round and current_round < max_round:
current_round += 1
if len(outputs) > 0:
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
last_outputs, return_message=True,
existing_tools_prompt=picked_tools_prompt,
message_for_call_agent=message,
call_agent=call_agent,
call_agent_level=call_agent_level,
temperature=temperature)
if special_tool_call == 'Finish':
next_round = False
conversation.extend(function_call_messages)
if isinstance(function_call_messages[0]['content'], types.GeneratorType):
function_call_messages[0]['content'] = next(
function_call_messages[0]['content'])
return function_call_messages[0]['content'].split('[FinalAnswer]')[-1]
if (self.enable_summary or token_overflow) and not call_agent:
if token_overflow:
print("token_overflow, using summary")
enable_summary = True
last_status = self.function_result_summary(
conversation, status=last_status, enable_summary=enable_summary)
if function_call_messages is not None:
conversation.extend(function_call_messages)
outputs.append(tool_result_format(
function_call_messages))
else:
next_round = False
conversation.extend(
[{"role": "assistant", "content": ''.join(last_outputs)}])
return ''.join(last_outputs).replace("</s>", "")
if self.enable_checker:
good_status, wrong_info = checker.check_conversation()
if not good_status:
next_round = False
print(
"Internal error in reasoning: " + wrong_info)
break
last_outputs = []
outputs.append("### TxAgent:\n")
last_outputs_str, token_overflow = self.llm_infer(messages=conversation,
temperature=temperature,
tools=picked_tools_prompt,
skip_special_tokens=False,
max_new_tokens=max_new_tokens, max_token=max_token,
check_token_status=True)
if last_outputs_str is None:
next_round = False
print(
"The number of tokens exceeds the maximum limit.")
else:
last_outputs.append(last_outputs_str)
if max_round == current_round:
print("The number of rounds exceeds the maximum limit!")
if self.force_finish:
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
else:
return None
except Exception as e:
print(f"Error: {e}")
if self.force_finish:
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
else:
return None
def build_logits_processor(self, messages, llm):
# Use the tokenizer from the LLM instance.
tokenizer = llm.get_tokenizer()
if self.avoid_repeat and len(messages) > 2:
assistant_messages = []
for i in range(1, len(messages) + 1):
if messages[-i]['role'] == 'assistant':
assistant_messages.append(messages[-i]['content'])
if len(assistant_messages) == 2:
break
forbidden_ids = [tokenizer.encode(
msg, add_special_tokens=False) for msg in assistant_messages]
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
else:
return None
def llm_infer(self, messages, temperature=0.1, tools=None,
output_begin_string=None, max_new_tokens=2048,
max_token=None, skip_special_tokens=True,
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
if model is None:
model = self.model
logits_processor = self.build_logits_processor(messages, model)
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_new_tokens,
seed=seed if seed is not None else self.seed,
)
prompt = self.chat_template.render(
messages=messages, tools=tools, add_generation_prompt=True)
if output_begin_string is not None:
prompt += output_begin_string
if check_token_status and max_token is not None:
token_overflow = False
num_input_tokens = len(self.tokenizer.encode(
prompt, return_tensors="pt")[0])
if max_token is not None:
if num_input_tokens > max_token:
torch.cuda.empty_cache()
gc.collect()
print("Number of input tokens before inference:",
num_input_tokens)
logger.info(
"The number of tokens exceeds the maximum limit!!!!")
token_overflow = True
return None, token_overflow
output = model.generate(
prompt,
sampling_params=sampling_params,
)
output = output[0].outputs[0].text
print("\033[92m" + output + "\033[0m")
if check_token_status and max_token is not None:
return output, token_overflow
return output
def run_self_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int) -> str:
print("\033[1;32;40mstart self agent\033[0m")
conversation = []
conversation = self.set_system_prompt(conversation, self.self_prompt)
conversation.append({"role": "user", "content": message})
return self.llm_infer(messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens, max_token=max_token)
def run_chat_agent(self, message: str,
temperature: float,
max_new_tokens: int,
max_token: int) -> str:
print("\033[1;32;40mstart chat agent\033[0m")
conversation = []
conversation = self.set_system_prompt(conversation, self.chat_prompt)
conversation.append({"role": "user", "content": message})
return self.llm_infer(messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens, max_token=max_token)
def run_format_agent(self, message: str,
answer: str,
temperature: float,
max_new_tokens: int,
max_token: int) -> str:
print("\033[1;32;40mstart format agent\033[0m")
if '[FinalAnswer]' in answer:
possible_final_answer = answer.split("[FinalAnswer]")[-1]
elif "\n\n" in answer:
possible_final_answer = answer.split("\n\n")[-1]
else:
possible_final_answer = answer.strip()
if len(possible_final_answer) == 1:
choice = possible_final_answer[0]
if choice in ['A', 'B', 'C', 'D', 'E']:
return choice
elif len(possible_final_answer) > 1:
if possible_final_answer[1] == ':':
choice = possible_final_answer[0]
if choice in ['A', 'B', 'C', 'D', 'E']:
print("choice", choice)
return choice
conversation = []
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'."
conversation = self.set_system_prompt(conversation, format_prompt)
conversation.append({"role": "user", "content": message +
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"})
return self.llm_infer(messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens, max_token=max_token)
def run_summary_agent(self, thought_calls: str,
function_response: str,
temperature: float,
max_new_tokens: int,
max_token: int) -> str:
print("\033[1;32;40mSummarized Tool Result:\033[0m")
generate_tool_result_summary_training_prompt = """Thought and function calls:
{thought_calls}
Function calls' responses:
\"\"\"
{function_response}
\"\"\"
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information.
Directly respond with the summarized sentence of the function calls' responses only.
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string:
""".format(thought_calls=thought_calls, function_response=function_response)
conversation = []
conversation.append(
{"role": "user", "content": generate_tool_result_summary_training_prompt})
output = self.llm_infer(messages=conversation,
temperature=temperature,
tools=None,
max_new_tokens=max_new_tokens, max_token=max_token)
if '[' in output:
output = output.split('[')[0]
return output
def function_result_summary(self, input_list, status, enable_summary):
"""
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles.
Supports 'length' and 'step' modes, and skips the last 'k' groups.
Parameters:
input_list (list): A list of dictionaries containing role and other information.
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0.
summary_context_length (int): The context length threshold for the 'length' mode.
last_processed_index (tuple or int): The last processed index.
Returns:
list: A list of extracted information from valid sequences.
"""
if 'tool_call_step' not in status:
status['tool_call_step'] = 0
for idx in range(len(input_list)):
pos_id = len(input_list)-idx-1
if input_list[pos_id]['role'] == 'assistant':
if 'tool_calls' in input_list[pos_id]:
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
status['tool_call_step'] += 1
break
if 'step' in status:
status['step'] += 1
else:
status['step'] = 0
if not enable_summary:
return status
if 'summarized_index' not in status:
status['summarized_index'] = 0
if 'summarized_step' not in status:
status['summarized_step'] = 0
if 'previous_length' not in status:
status['previous_length'] = 0
if 'history' not in status:
status['history'] = []
function_response = ''
idx = 0
current_summarized_index = status['summarized_index']
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
idx = current_summarized_index
while idx < len(input_list):
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
if input_list[idx]['role'] == 'assistant':
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
this_thought_calls = None
else:
if len(function_response) != 0:
print("internal summary")
status['summarized_step'] += 1
result_summary = self.run_summary_agent(
thought_calls=this_thought_calls,
function_response=function_response,
temperature=0.1,
max_new_tokens=1024,
max_token=99999
)
input_list.insert(
last_call_idx+1, {'role': 'tool', 'content': result_summary})
status['summarized_index'] = last_call_idx + 2
idx += 1
last_call_idx = idx
this_thought_calls = input_list[idx]['content'] + \
input_list[idx]['tool_calls']
function_response = ''
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
function_response += input_list[idx]['content']
del input_list[idx]
idx -= 1
else:
break
idx += 1
if len(function_response) != 0:
status['summarized_step'] += 1
result_summary = self.run_summary_agent(
thought_calls=this_thought_calls,
function_response=function_response,
temperature=0.1,
max_new_tokens=1024,
max_token=99999
)
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
for tool_call in tool_calls:
del tool_call['call_id']
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
input_list.insert(
last_call_idx+1, {'role': 'tool', 'content': result_summary})
status['summarized_index'] = last_call_idx + 2
return status
# Following are Gradio related functions
# General update method that accepts any new arguments through kwargs
def update_parameters(self, **kwargs):
for key, value in kwargs.items():
if hasattr(self, key):
setattr(self, key, value)
# Return the updated attributes
updated_attributes = {key: value for key,
value in kwargs.items() if hasattr(self, key)}
return updated_attributes
def run_gradio_chat(self, message: str,
history: list,
temperature: float,
max_new_tokens: int,
max_token: int,
call_agent: bool,
conversation: gr.State,
max_round: int = 20,
seed: int = None,
call_agent_level: int = 0,
sub_agent_task: str = None) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
print("\033[1;32;40mstart\033[0m")
print("len(message)", len(message))
if len(message) <= 10:
yield "Hi, I am TxAgent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters."
return "Please provide a valid message."
outputs = []
outputs_str = ''
last_outputs = []
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
call_agent,
call_agent_level,
message)
conversation = self.initialize_conversation(
message,
conversation=conversation,
history=history)
history = []
next_round = True
function_call_messages = []
current_round = 0
enable_summary = False
last_status = {} # for summary
token_overflow = False
if self.enable_checker:
checker = ReasoningTraceChecker(
message, conversation, init_index=len(conversation))
try:
while next_round and current_round < max_round:
current_round += 1
if len(last_outputs) > 0:
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
last_outputs, return_message=True,
existing_tools_prompt=picked_tools_prompt,
message_for_call_agent=message,
call_agent=call_agent,
call_agent_level=call_agent_level,
temperature=temperature)
history.extend(current_gradio_history)
if special_tool_call == 'Finish':
yield history
next_round = False
conversation.extend(function_call_messages)
return function_call_messages[0]['content']
elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse':
history.append(
ChatMessage(role="assistant", content=history[-1].content))
yield history
next_round = False
return history[-1].content
if (self.enable_summary or token_overflow) and not call_agent:
if token_overflow:
print("token_overflow, using summary")
enable_summary = True
last_status = self.function_result_summary(
conversation, status=last_status,
enable_summary=enable_summary)
if function_call_messages is not None:
conversation.extend(function_call_messages)
formated_md_function_call_messages = tool_result_format(
function_call_messages)
yield history
else:
next_round = False
conversation.extend(
[{"role": "assistant", "content": ''.join(last_outputs)}])
return ''.join(last_outputs).replace("</s>", "")
if self.enable_checker:
good_status, wrong_info = checker.check_conversation()
if not good_status:
next_round = False
print("Internal error in reasoning: " + wrong_info)
break
last_outputs = []
last_outputs_str, token_overflow = self.llm_infer(
messages=conversation,
temperature=temperature,
tools=picked_tools_prompt,
skip_special_tokens=False,
max_new_tokens=max_new_tokens,
max_token=max_token,
seed=seed,
check_token_status=True)
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
for each in history:
if each.metadata is not None:
each.metadata['status'] = 'done'
if '[FinalAnswer]' in last_thought:
final_thought, final_answer = last_thought.split(
'[FinalAnswer]')
history.append(
ChatMessage(role="assistant",
content=final_thought.strip())
)
yield history
history.append(
ChatMessage(
role="assistant", content="**Answer**:\n"+final_answer.strip())
)
yield history
else:
history.append(ChatMessage(
role="assistant", content=last_thought))
yield history
last_outputs.append(last_outputs_str)
if next_round:
if self.force_finish:
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
conversation, temperature, max_new_tokens, max_token)
for each in history:
if each.metadata is not None:
each.metadata['status'] = 'done'
if '[FinalAnswer]' in last_thought:
final_thought, final_answer = last_thought.split(
'[FinalAnswer]')
history.append(
ChatMessage(role="assistant",
content=final_thought.strip())
)
yield history
history.append(
ChatMessage(
role="assistant", content="**Answer**:\n"+final_answer.strip())
)
yield history
else:
yield "The number of rounds exceeds the maximum limit!"
except Exception as e:
print(f"Error: {e}")
if self.force_finish:
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
conversation,
temperature,
max_new_tokens,
max_token)
for each in history:
if each.metadata is not None:
each.metadata['status'] = 'done'
if '[FinalAnswer]' in last_thought or '"name": "Finish",' in last_outputs_str:
if '[FinalAnswer]' in last_thought:
final_thought, final_answer = last_thought.split('[FinalAnswer]', 1)
else:
final_thought = ""
final_answer = last_thought
history.append(
ChatMessage(role="assistant",
content=final_thought.strip())
)
yield history
history.append(
ChatMessage(
role="assistant", content="**Answer**:\n" + final_answer.strip())
)
yield history
else:
return None
|