Spaces:
Paused
Paused
Upload 13 files
Browse files- .gitattributes +3 -0
- ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt +3 -0
- app.py +133 -0
- data/new_tool.json +1 -0
- img/q1.gif +3 -0
- img/q2.gif +3 -0
- img/q3.gif +3 -0
- pyproject.toml +3 -0
- requirements.txt +9 -0
- setup.cfg +22 -0
- src/txagent/__init__.py +6 -0
- src/txagent/toolrag.py +67 -0
- src/txagent/txagent.py +945 -0
- src/txagent/utils.py +117 -0
.gitattributes
CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
img/q1.gif filter=lfs diff=lfs merge=lfs -text
|
37 |
+
img/q2.gif filter=lfs diff=lfs merge=lfs -text
|
38 |
+
img/q3.gif filter=lfs diff=lfs merge=lfs -text
|
ToolRAG-T1-GTE-Qwen2-1.5Btool_embedding_47dc56b3e3ddeb31af4f19defdd538d984de1500368852a0fab80bc2e826c944.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6f7e35367db5296b03cf366f3d276ecd3e08867b70aec24d91258af94a648df
|
3 |
+
size 20132
|
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
from multiprocessing import freeze_support
|
5 |
+
import importlib
|
6 |
+
import inspect
|
7 |
+
import json
|
8 |
+
|
9 |
+
# Fix path to include src
|
10 |
+
sys.path.insert(0, os.path.join(os.path.dirname(__file__), "src"))
|
11 |
+
|
12 |
+
# Reload TxAgent from txagent.py
|
13 |
+
import txagent.txagent
|
14 |
+
importlib.reload(txagent.txagent)
|
15 |
+
from txagent.txagent import TxAgent
|
16 |
+
|
17 |
+
# Debug info
|
18 |
+
print(">>> TxAgent loaded from:", inspect.getfile(TxAgent))
|
19 |
+
print(">>> TxAgent has run_gradio_chat:", hasattr(TxAgent, "run_gradio_chat"))
|
20 |
+
|
21 |
+
# Env vars
|
22 |
+
current_dir = os.path.abspath(os.path.dirname(__file__))
|
23 |
+
os.environ["MKL_THREADING_LAYER"] = "GNU"
|
24 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
25 |
+
|
26 |
+
# Model config
|
27 |
+
model_name = "mims-harvard/TxAgent-T1-Llama-3.1-8B"
|
28 |
+
rag_model_name = "mims-harvard/ToolRAG-T1-GTE-Qwen2-1.5B"
|
29 |
+
new_tool_files = {
|
30 |
+
"new_tool": os.path.join(current_dir, "data", "new_tool.json")
|
31 |
+
}
|
32 |
+
|
33 |
+
# Sample questions
|
34 |
+
question_examples = [
|
35 |
+
["Given a patient with WHIM syndrome on prophylactic antibiotics, is it advisable to co-administer Xolremdi with fluconazole?"],
|
36 |
+
["What treatment options exist for HER2+ breast cancer resistant to trastuzumab?"]
|
37 |
+
]
|
38 |
+
|
39 |
+
# Helper: format assistant responses in collapsible panels
|
40 |
+
def format_collapsible(content):
|
41 |
+
if isinstance(content, (dict, list)):
|
42 |
+
try:
|
43 |
+
formatted = json.dumps(content, indent=2)
|
44 |
+
except Exception:
|
45 |
+
formatted = str(content)
|
46 |
+
else:
|
47 |
+
formatted = str(content)
|
48 |
+
|
49 |
+
return (
|
50 |
+
"<details style='border: 1px solid #ccc; padding: 8px; margin-top: 8px;'>"
|
51 |
+
"<summary style='font-weight: bold;'>Answer</summary>"
|
52 |
+
f"<pre style='white-space: pre-wrap;'>{formatted}</pre>"
|
53 |
+
"</details>"
|
54 |
+
)
|
55 |
+
|
56 |
+
# === UI setup
|
57 |
+
def create_ui(agent):
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
gr.Markdown("<h1 style='text-align: center;'>TxAgent: Therapeutic Reasoning</h1>")
|
60 |
+
gr.Markdown("Ask biomedical or therapeutic questions. Powered by step-by-step reasoning and tools.")
|
61 |
+
|
62 |
+
temperature = gr.Slider(0, 1, value=0.3, label="Temperature")
|
63 |
+
max_new_tokens = gr.Slider(128, 4096, value=1024, label="Max New Tokens")
|
64 |
+
max_tokens = gr.Slider(128, 32000, value=8192, label="Max Total Tokens")
|
65 |
+
max_round = gr.Slider(1, 50, value=30, label="Max Rounds")
|
66 |
+
multi_agent = gr.Checkbox(label="Enable Multi-agent Reasoning", value=False)
|
67 |
+
conversation_state = gr.State([])
|
68 |
+
|
69 |
+
chatbot = gr.Chatbot(label="TxAgent", height=600, type="messages")
|
70 |
+
message_input = gr.Textbox(placeholder="Ask your biomedical question...", show_label=False)
|
71 |
+
send_button = gr.Button("Send", variant="primary")
|
72 |
+
|
73 |
+
# Main handler
|
74 |
+
def handle_chat(message, history, temperature, max_new_tokens, max_tokens, multi_agent, conversation, max_round):
|
75 |
+
generator = agent.run_gradio_chat(
|
76 |
+
message=message,
|
77 |
+
history=history,
|
78 |
+
temperature=temperature,
|
79 |
+
max_new_tokens=max_new_tokens,
|
80 |
+
max_token=max_tokens,
|
81 |
+
call_agent=multi_agent,
|
82 |
+
conversation=conversation,
|
83 |
+
max_round=max_round
|
84 |
+
)
|
85 |
+
|
86 |
+
for update in generator:
|
87 |
+
formatted = []
|
88 |
+
for m in update:
|
89 |
+
role = m["role"] if isinstance(m, dict) else getattr(m, "role", "assistant")
|
90 |
+
content = m["content"] if isinstance(m, dict) else getattr(m, "content", "")
|
91 |
+
|
92 |
+
if role == "assistant":
|
93 |
+
content = format_collapsible(content)
|
94 |
+
|
95 |
+
formatted.append({"role": role, "content": content})
|
96 |
+
yield formatted
|
97 |
+
|
98 |
+
# Button and Enter triggers
|
99 |
+
inputs = [message_input, chatbot, temperature, max_new_tokens, max_tokens, multi_agent, conversation_state, max_round]
|
100 |
+
send_button.click(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
101 |
+
message_input.submit(fn=handle_chat, inputs=inputs, outputs=chatbot)
|
102 |
+
|
103 |
+
gr.Examples(examples=question_examples, inputs=message_input)
|
104 |
+
gr.Markdown("**DISCLAIMER**: This demo is for research purposes only and does not provide medical advice.")
|
105 |
+
|
106 |
+
return demo
|
107 |
+
|
108 |
+
# === Entry point
|
109 |
+
if __name__ == "__main__":
|
110 |
+
freeze_support()
|
111 |
+
|
112 |
+
try:
|
113 |
+
agent = TxAgent(
|
114 |
+
model_name=model_name,
|
115 |
+
rag_model_name=rag_model_name,
|
116 |
+
tool_files_dict=new_tool_files,
|
117 |
+
force_finish=True,
|
118 |
+
enable_checker=True,
|
119 |
+
step_rag_num=10,
|
120 |
+
seed=100,
|
121 |
+
additional_default_tools=[] # Avoid loading unimplemented tools
|
122 |
+
)
|
123 |
+
agent.init_model()
|
124 |
+
|
125 |
+
if not hasattr(agent, "run_gradio_chat"):
|
126 |
+
raise AttributeError("TxAgent missing run_gradio_chat")
|
127 |
+
|
128 |
+
demo = create_ui(agent)
|
129 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
130 |
+
|
131 |
+
except Exception as e:
|
132 |
+
print(f"❌ App failed to start: {e}")
|
133 |
+
raise
|
data/new_tool.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
[]
|
img/q1.gif
ADDED
![]() |
Git LFS Details
|
img/q2.gif
ADDED
![]() |
Git LFS Details
|
img/q3.gif
ADDED
![]() |
Git LFS Details
|
pyproject.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[build-system]
|
2 |
+
requires = ["setuptools", "wheel"]
|
3 |
+
build-backend = "setuptools.build_meta"
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tooluniverse
|
3 |
+
transformers
|
4 |
+
sentence-transformers
|
5 |
+
torch
|
6 |
+
vllm
|
7 |
+
accelerate
|
8 |
+
scipy
|
9 |
+
huggingface_hub
|
setup.cfg
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[metadata]
|
2 |
+
name = txagent
|
3 |
+
version = 0.1.2
|
4 |
+
description = TxAgent: An AI Agent for Therapeutic Reasoning Across a Universe of Tools
|
5 |
+
author = Shanghua Gao
|
6 |
+
author_email = [email protected]
|
7 |
+
url = https://github.com/mims-harvard/TxAgent
|
8 |
+
long_description = file: README.md
|
9 |
+
long_description_content_type = text/markdown
|
10 |
+
|
11 |
+
[options]
|
12 |
+
packages = find:
|
13 |
+
package_dir =
|
14 |
+
= src
|
15 |
+
python_requires = >=3.6
|
16 |
+
install_requires =
|
17 |
+
gradio
|
18 |
+
vllm
|
19 |
+
sentence_transformers
|
20 |
+
|
21 |
+
[options.packages.find]
|
22 |
+
where = src
|
src/txagent/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .txagent import TxAgent
|
2 |
+
from .toolrag import ToolRAGModel
|
3 |
+
__all__ = [
|
4 |
+
"TxAgent",
|
5 |
+
"ToolRAGModel",
|
6 |
+
]
|
src/txagent/toolrag.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from .utils import get_md5
|
6 |
+
|
7 |
+
|
8 |
+
class ToolRAGModel:
|
9 |
+
def __init__(self, rag_model_name):
|
10 |
+
self.rag_model_name = rag_model_name
|
11 |
+
self.rag_model = None
|
12 |
+
self.tool_desc_embedding = None
|
13 |
+
self.tool_name = None
|
14 |
+
self.tool_embedding_path = None
|
15 |
+
self.load_rag_model()
|
16 |
+
|
17 |
+
def load_rag_model(self):
|
18 |
+
self.rag_model = SentenceTransformer(self.rag_model_name)
|
19 |
+
self.rag_model.max_seq_length = 4096
|
20 |
+
self.rag_model.tokenizer.padding_side = "right"
|
21 |
+
|
22 |
+
def load_tool_desc_embedding(self, toolbox):
|
23 |
+
self.tool_name, _ = toolbox.refresh_tool_name_desc(enable_full_desc=True)
|
24 |
+
all_tools_str = [json.dumps(each) for each in toolbox.prepare_tool_prompts(toolbox.all_tools)]
|
25 |
+
md5_value = get_md5(str(all_tools_str))
|
26 |
+
print("Computed MD5 for tool embedding:", md5_value)
|
27 |
+
|
28 |
+
self.tool_embedding_path = os.path.join(
|
29 |
+
os.path.dirname(__file__),
|
30 |
+
self.rag_model_name.split("/")[-1] + f"_tool_embedding_{md5_value}.pt"
|
31 |
+
)
|
32 |
+
|
33 |
+
if os.path.exists(self.tool_embedding_path):
|
34 |
+
try:
|
35 |
+
self.tool_desc_embedding = torch.load(self.tool_embedding_path, map_location="cpu")
|
36 |
+
assert len(self.tool_desc_embedding) == len(toolbox.all_tools), \
|
37 |
+
"Tool count mismatch with loaded embeddings."
|
38 |
+
print("\033[92mLoaded cached tool_desc_embedding.\033[0m")
|
39 |
+
return
|
40 |
+
except Exception as e:
|
41 |
+
print(f"⚠️ Failed loading cached embeddings: {e}")
|
42 |
+
self.tool_desc_embedding = None
|
43 |
+
|
44 |
+
print("\033[93mGenerating new tool_desc_embedding...\033[0m")
|
45 |
+
self.tool_desc_embedding = self.rag_model.encode(
|
46 |
+
all_tools_str, prompt="", normalize_embeddings=True
|
47 |
+
)
|
48 |
+
|
49 |
+
torch.save(self.tool_desc_embedding, self.tool_embedding_path)
|
50 |
+
print(f"\033[92mSaved new tool_desc_embedding to {self.tool_embedding_path}\033[0m")
|
51 |
+
|
52 |
+
def rag_infer(self, query, top_k=5):
|
53 |
+
torch.cuda.empty_cache()
|
54 |
+
queries = [query]
|
55 |
+
query_embeddings = self.rag_model.encode(
|
56 |
+
queries, prompt="", normalize_embeddings=True
|
57 |
+
)
|
58 |
+
if self.tool_desc_embedding is None:
|
59 |
+
raise RuntimeError("❌ tool_desc_embedding is not initialized. Did you forget to call load_tool_desc_embedding()?")
|
60 |
+
|
61 |
+
scores = self.rag_model.similarity(
|
62 |
+
query_embeddings, self.tool_desc_embedding
|
63 |
+
)
|
64 |
+
top_k = min(top_k, len(self.tool_name))
|
65 |
+
top_k_indices = torch.topk(scores, top_k).indices.tolist()[0]
|
66 |
+
top_k_tool_names = [self.tool_name[i] for i in top_k_indices]
|
67 |
+
return top_k_tool_names
|
src/txagent/txagent.py
ADDED
@@ -0,0 +1,945 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
import gc
|
6 |
+
import numpy as np
|
7 |
+
from vllm import LLM, SamplingParams
|
8 |
+
from jinja2 import Template
|
9 |
+
from typing import List
|
10 |
+
import types
|
11 |
+
from tooluniverse import ToolUniverse
|
12 |
+
from gradio import ChatMessage
|
13 |
+
from .toolrag import ToolRAGModel
|
14 |
+
import torch
|
15 |
+
# near the top of txagent.py
|
16 |
+
import logging
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
logging.basicConfig(level=logging.INFO)
|
19 |
+
|
20 |
+
from .utils import NoRepeatSentenceProcessor, ReasoningTraceChecker, tool_result_format
|
21 |
+
|
22 |
+
|
23 |
+
class TxAgent:
|
24 |
+
def __init__(self, model_name,
|
25 |
+
rag_model_name,
|
26 |
+
tool_files_dict=None, # None leads to the default tool files in ToolUniverse
|
27 |
+
enable_finish=True,
|
28 |
+
enable_rag=True,
|
29 |
+
enable_summary=False,
|
30 |
+
init_rag_num=0,
|
31 |
+
step_rag_num=10,
|
32 |
+
summary_mode='step',
|
33 |
+
summary_skip_last_k=0,
|
34 |
+
summary_context_length=None,
|
35 |
+
force_finish=True,
|
36 |
+
avoid_repeat=True,
|
37 |
+
seed=None,
|
38 |
+
enable_checker=False,
|
39 |
+
enable_chat=False,
|
40 |
+
additional_default_tools=None,
|
41 |
+
):
|
42 |
+
self.model_name = model_name
|
43 |
+
self.tokenizer = None
|
44 |
+
self.terminators = None
|
45 |
+
self.rag_model_name = rag_model_name
|
46 |
+
self.tool_files_dict = tool_files_dict
|
47 |
+
self.model = None
|
48 |
+
self.rag_model = ToolRAGModel(rag_model_name)
|
49 |
+
self.tooluniverse = None
|
50 |
+
# self.tool_desc = None
|
51 |
+
self.prompt_multi_step = "You are a helpful assistant that will solve problems through detailed, step-by-step reasoning and actions based on your reasoning. Typically, your actions will use the provided functions. You have access to the following functions."
|
52 |
+
self.self_prompt = "Strictly follow the instruction."
|
53 |
+
self.chat_prompt = "You are helpful assistant to chat with the user."
|
54 |
+
self.enable_finish = enable_finish
|
55 |
+
self.enable_rag = enable_rag
|
56 |
+
self.enable_summary = enable_summary
|
57 |
+
self.summary_mode = summary_mode
|
58 |
+
self.summary_skip_last_k = summary_skip_last_k
|
59 |
+
self.summary_context_length = summary_context_length
|
60 |
+
self.init_rag_num = init_rag_num
|
61 |
+
self.step_rag_num = step_rag_num
|
62 |
+
self.force_finish = force_finish
|
63 |
+
self.avoid_repeat = avoid_repeat
|
64 |
+
self.seed = seed
|
65 |
+
self.enable_checker = enable_checker
|
66 |
+
self.additional_default_tools = additional_default_tools
|
67 |
+
self.print_self_values()
|
68 |
+
|
69 |
+
def init_model(self):
|
70 |
+
self.load_models()
|
71 |
+
self.load_tooluniverse()
|
72 |
+
self.load_tool_desc_embedding()
|
73 |
+
|
74 |
+
def print_self_values(self):
|
75 |
+
for attr, value in self.__dict__.items():
|
76 |
+
print(f"{attr}: {value}")
|
77 |
+
|
78 |
+
def load_models(self, model_name=None):
|
79 |
+
if model_name is not None:
|
80 |
+
if model_name == self.model_name:
|
81 |
+
return f"The model {model_name} is already loaded."
|
82 |
+
self.model_name = model_name
|
83 |
+
|
84 |
+
self.model = LLM(model=self.model_name)
|
85 |
+
self.chat_template = Template(self.model.get_tokenizer().chat_template)
|
86 |
+
self.tokenizer = self.model.get_tokenizer()
|
87 |
+
|
88 |
+
return f"Model {model_name} loaded successfully."
|
89 |
+
|
90 |
+
def load_tooluniverse(self):
|
91 |
+
self.tooluniverse = ToolUniverse(tool_files=self.tool_files_dict)
|
92 |
+
self.tooluniverse.load_tools()
|
93 |
+
special_tools = self.tooluniverse.prepare_tool_prompts(
|
94 |
+
self.tooluniverse.tool_category_dicts["special_tools"])
|
95 |
+
self.special_tools_name = [tool['name'] for tool in special_tools]
|
96 |
+
|
97 |
+
def load_tool_desc_embedding(self):
|
98 |
+
self.rag_model.load_tool_desc_embedding(self.tooluniverse)
|
99 |
+
|
100 |
+
def rag_infer(self, query, top_k=5):
|
101 |
+
return self.rag_model.rag_infer(query, top_k)
|
102 |
+
|
103 |
+
def initialize_tools_prompt(self, call_agent, call_agent_level, message):
|
104 |
+
picked_tools_prompt = []
|
105 |
+
picked_tools_prompt = self.add_special_tools(
|
106 |
+
picked_tools_prompt, call_agent=call_agent)
|
107 |
+
if call_agent:
|
108 |
+
call_agent_level += 1
|
109 |
+
if call_agent_level >= 2:
|
110 |
+
call_agent = False
|
111 |
+
|
112 |
+
if not call_agent:
|
113 |
+
picked_tools_prompt += self.tool_RAG(
|
114 |
+
message=message, rag_num=self.init_rag_num)
|
115 |
+
return picked_tools_prompt, call_agent_level
|
116 |
+
|
117 |
+
def initialize_conversation(self, message, conversation=None, history=None):
|
118 |
+
if conversation is None:
|
119 |
+
conversation = []
|
120 |
+
|
121 |
+
conversation = self.set_system_prompt(
|
122 |
+
conversation, self.prompt_multi_step)
|
123 |
+
if history is not None:
|
124 |
+
if len(history) == 0:
|
125 |
+
conversation = []
|
126 |
+
print("clear conversation successfully")
|
127 |
+
else:
|
128 |
+
for i in range(len(history)):
|
129 |
+
if history[i]['role'] == 'user':
|
130 |
+
if i-1 >= 0 and history[i-1]['role'] == 'assistant':
|
131 |
+
conversation.append(
|
132 |
+
{"role": "assistant", "content": history[i-1]['content']})
|
133 |
+
conversation.append(
|
134 |
+
{"role": "user", "content": history[i]['content']})
|
135 |
+
if i == len(history)-1 and history[i]['role'] == 'assistant':
|
136 |
+
conversation.append(
|
137 |
+
{"role": "assistant", "content": history[i]['content']})
|
138 |
+
|
139 |
+
conversation.append({"role": "user", "content": message})
|
140 |
+
|
141 |
+
return conversation
|
142 |
+
|
143 |
+
def tool_RAG(self, message=None,
|
144 |
+
picked_tool_names=None,
|
145 |
+
existing_tools_prompt=[],
|
146 |
+
rag_num=5,
|
147 |
+
return_call_result=False):
|
148 |
+
extra_factor = 30 # Factor to retrieve more than rag_num
|
149 |
+
if picked_tool_names is None:
|
150 |
+
assert picked_tool_names is not None or message is not None
|
151 |
+
picked_tool_names = self.rag_infer(
|
152 |
+
message, top_k=rag_num*extra_factor)
|
153 |
+
|
154 |
+
picked_tool_names_no_special = []
|
155 |
+
for tool in picked_tool_names:
|
156 |
+
if tool not in self.special_tools_name:
|
157 |
+
picked_tool_names_no_special.append(tool)
|
158 |
+
picked_tool_names_no_special = picked_tool_names_no_special[:rag_num]
|
159 |
+
picked_tool_names = picked_tool_names_no_special[:rag_num]
|
160 |
+
|
161 |
+
picked_tools = self.tooluniverse.get_tool_by_name(picked_tool_names)
|
162 |
+
picked_tools_prompt = self.tooluniverse.prepare_tool_prompts(
|
163 |
+
picked_tools)
|
164 |
+
if return_call_result:
|
165 |
+
return picked_tools_prompt, picked_tool_names
|
166 |
+
return picked_tools_prompt
|
167 |
+
|
168 |
+
def add_special_tools(self, tools, call_agent=False):
|
169 |
+
if self.enable_finish:
|
170 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
171 |
+
'Finish', return_prompt=True))
|
172 |
+
print("Finish tool is added")
|
173 |
+
if call_agent:
|
174 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
175 |
+
'CallAgent', return_prompt=True))
|
176 |
+
print("CallAgent tool is added")
|
177 |
+
else:
|
178 |
+
if self.enable_rag:
|
179 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
180 |
+
'Tool_RAG', return_prompt=True))
|
181 |
+
print("Tool_RAG tool is added")
|
182 |
+
|
183 |
+
if self.additional_default_tools is not None:
|
184 |
+
for each_tool_name in self.additional_default_tools:
|
185 |
+
tool_prompt = self.tooluniverse.get_one_tool_by_one_name(
|
186 |
+
each_tool_name, return_prompt=True)
|
187 |
+
if tool_prompt is not None:
|
188 |
+
print(f"{each_tool_name} tool is added")
|
189 |
+
tools.append(tool_prompt)
|
190 |
+
return tools
|
191 |
+
|
192 |
+
def add_finish_tools(self, tools):
|
193 |
+
tools.append(self.tooluniverse.get_one_tool_by_one_name(
|
194 |
+
'Finish', return_prompt=True))
|
195 |
+
print("Finish tool is added")
|
196 |
+
return tools
|
197 |
+
|
198 |
+
def set_system_prompt(self, conversation, sys_prompt):
|
199 |
+
if len(conversation) == 0:
|
200 |
+
conversation.append(
|
201 |
+
{"role": "system", "content": sys_prompt})
|
202 |
+
else:
|
203 |
+
conversation[0] = {"role": "system", "content": sys_prompt}
|
204 |
+
return conversation
|
205 |
+
|
206 |
+
def run_function_call(self, fcall_str,
|
207 |
+
return_message=False,
|
208 |
+
existing_tools_prompt=None,
|
209 |
+
message_for_call_agent=None,
|
210 |
+
call_agent=False,
|
211 |
+
call_agent_level=None,
|
212 |
+
temperature=None):
|
213 |
+
|
214 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
215 |
+
fcall_str, return_message=return_message, verbose=False)
|
216 |
+
call_results = []
|
217 |
+
special_tool_call = ''
|
218 |
+
if function_call_json is not None:
|
219 |
+
if isinstance(function_call_json, list):
|
220 |
+
for i in range(len(function_call_json)):
|
221 |
+
print("\033[94mTool Call:\033[0m", function_call_json[i])
|
222 |
+
if function_call_json[i]["name"] == 'Finish':
|
223 |
+
special_tool_call = 'Finish'
|
224 |
+
break
|
225 |
+
elif function_call_json[i]["name"] == 'Tool_RAG':
|
226 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
227 |
+
message=message,
|
228 |
+
existing_tools_prompt=existing_tools_prompt,
|
229 |
+
rag_num=self.step_rag_num,
|
230 |
+
return_call_result=True)
|
231 |
+
existing_tools_prompt += new_tools_prompt
|
232 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
233 |
+
if call_agent_level < 2 and call_agent:
|
234 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
235 |
+
full_message = (
|
236 |
+
message_for_call_agent +
|
237 |
+
"\nYou must follow the following plan to answer the question: " +
|
238 |
+
str(solution_plan)
|
239 |
+
)
|
240 |
+
call_result = self.run_multistep_agent(
|
241 |
+
full_message, temperature=temperature,
|
242 |
+
max_new_tokens=1024, max_token=99999,
|
243 |
+
call_agent=False, call_agent_level=call_agent_level)
|
244 |
+
call_result = call_result.split(
|
245 |
+
'[FinalAnswer]')[-1].strip()
|
246 |
+
else:
|
247 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
248 |
+
else:
|
249 |
+
call_result = self.tooluniverse.run_one_function(
|
250 |
+
function_call_json[i])
|
251 |
+
|
252 |
+
call_id = self.tooluniverse.call_id_gen()
|
253 |
+
function_call_json[i]["call_id"] = call_id
|
254 |
+
print("\033[94mTool Call Result:\033[0m", call_result)
|
255 |
+
call_results.append({
|
256 |
+
"role": "tool",
|
257 |
+
"content": json.dumps({"content": call_result, "call_id": call_id})
|
258 |
+
})
|
259 |
+
else:
|
260 |
+
call_results.append({
|
261 |
+
"role": "tool",
|
262 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
263 |
+
})
|
264 |
+
|
265 |
+
revised_messages = [{
|
266 |
+
"role": "assistant",
|
267 |
+
"content": message.strip(),
|
268 |
+
"tool_calls": json.dumps(function_call_json)
|
269 |
+
}] + call_results
|
270 |
+
|
271 |
+
# Yield the final result.
|
272 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
273 |
+
|
274 |
+
def run_function_call_stream(self, fcall_str,
|
275 |
+
return_message=False,
|
276 |
+
existing_tools_prompt=None,
|
277 |
+
message_for_call_agent=None,
|
278 |
+
call_agent=False,
|
279 |
+
call_agent_level=None,
|
280 |
+
temperature=None,
|
281 |
+
return_gradio_history=True):
|
282 |
+
|
283 |
+
function_call_json, message = self.tooluniverse.extract_function_call_json(
|
284 |
+
fcall_str, return_message=return_message, verbose=False)
|
285 |
+
call_results = []
|
286 |
+
special_tool_call = ''
|
287 |
+
if return_gradio_history:
|
288 |
+
gradio_history = []
|
289 |
+
if function_call_json is not None:
|
290 |
+
if isinstance(function_call_json, list):
|
291 |
+
for i in range(len(function_call_json)):
|
292 |
+
if function_call_json[i]["name"] == 'Finish':
|
293 |
+
special_tool_call = 'Finish'
|
294 |
+
break
|
295 |
+
elif function_call_json[i]["name"] == 'Tool_RAG':
|
296 |
+
new_tools_prompt, call_result = self.tool_RAG(
|
297 |
+
message=message,
|
298 |
+
existing_tools_prompt=existing_tools_prompt,
|
299 |
+
rag_num=self.step_rag_num,
|
300 |
+
return_call_result=True)
|
301 |
+
existing_tools_prompt += new_tools_prompt
|
302 |
+
elif function_call_json[i]["name"] == 'DirectResponse':
|
303 |
+
call_result = function_call_json[i]['arguments']['respose']
|
304 |
+
special_tool_call = 'DirectResponse'
|
305 |
+
elif function_call_json[i]["name"] == 'RequireClarification':
|
306 |
+
call_result = function_call_json[i]['arguments']['unclear_question']
|
307 |
+
special_tool_call = 'RequireClarification'
|
308 |
+
elif function_call_json[i]["name"] == 'CallAgent':
|
309 |
+
if call_agent_level < 2 and call_agent:
|
310 |
+
solution_plan = function_call_json[i]['arguments']['solution']
|
311 |
+
full_message = (
|
312 |
+
message_for_call_agent +
|
313 |
+
"\nYou must follow the following plan to answer the question: " +
|
314 |
+
str(solution_plan)
|
315 |
+
)
|
316 |
+
sub_agent_task = "Sub TxAgent plan: " + \
|
317 |
+
str(solution_plan)
|
318 |
+
# When streaming, yield responses as they arrive.
|
319 |
+
call_result = yield from self.run_gradio_chat(
|
320 |
+
full_message, history=[], temperature=temperature,
|
321 |
+
max_new_tokens=1024, max_token=99999,
|
322 |
+
call_agent=False, call_agent_level=call_agent_level,
|
323 |
+
conversation=None,
|
324 |
+
sub_agent_task=sub_agent_task)
|
325 |
+
|
326 |
+
call_result = call_result.split(
|
327 |
+
'[FinalAnswer]')[-1]
|
328 |
+
else:
|
329 |
+
call_result = "Error: The CallAgent has been disabled. Please proceed with your reasoning process to solve this question."
|
330 |
+
else:
|
331 |
+
call_result = self.tooluniverse.run_one_function(
|
332 |
+
function_call_json[i])
|
333 |
+
|
334 |
+
call_id = self.tooluniverse.call_id_gen()
|
335 |
+
function_call_json[i]["call_id"] = call_id
|
336 |
+
call_results.append({
|
337 |
+
"role": "tool",
|
338 |
+
"content": json.dumps({"content": call_result, "call_id": call_id})
|
339 |
+
})
|
340 |
+
if return_gradio_history and function_call_json[i]["name"] != 'Finish':
|
341 |
+
if function_call_json[i]["name"] == 'Tool_RAG':
|
342 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
343 |
+
"title": "🧰 "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
344 |
+
|
345 |
+
else:
|
346 |
+
gradio_history.append(ChatMessage(role="assistant", content=str(call_result), metadata={
|
347 |
+
"title": "⚒️ "+function_call_json[i]['name'], "log": str(function_call_json[i]['arguments'])}))
|
348 |
+
else:
|
349 |
+
call_results.append({
|
350 |
+
"role": "tool",
|
351 |
+
"content": json.dumps({"content": "Not a valid function call, please check the function call format."})
|
352 |
+
})
|
353 |
+
|
354 |
+
revised_messages = [{
|
355 |
+
"role": "assistant",
|
356 |
+
"content": message.strip(),
|
357 |
+
"tool_calls": json.dumps(function_call_json)
|
358 |
+
}] + call_results
|
359 |
+
|
360 |
+
# Yield the final result.
|
361 |
+
if return_gradio_history:
|
362 |
+
return revised_messages, existing_tools_prompt, special_tool_call, gradio_history
|
363 |
+
else:
|
364 |
+
return revised_messages, existing_tools_prompt, special_tool_call
|
365 |
+
|
366 |
+
def get_answer_based_on_unfinished_reasoning(self, conversation, temperature, max_new_tokens, max_token, outputs=None):
|
367 |
+
if conversation[-1]['role'] == 'assisant':
|
368 |
+
conversation.append(
|
369 |
+
{'role': 'tool', 'content': 'Errors happen during the function call, please come up with the final answer with the current information.'})
|
370 |
+
finish_tools_prompt = self.add_finish_tools([])
|
371 |
+
|
372 |
+
last_outputs_str = self.llm_infer(messages=conversation,
|
373 |
+
temperature=temperature,
|
374 |
+
tools=finish_tools_prompt,
|
375 |
+
output_begin_string='Since I cannot continue reasoning, I will provide the final answer based on the current information and general knowledge.\n\n[FinalAnswer]',
|
376 |
+
skip_special_tokens=True,
|
377 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
378 |
+
print(last_outputs_str)
|
379 |
+
return last_outputs_str
|
380 |
+
|
381 |
+
def run_multistep_agent(self, message: str,
|
382 |
+
temperature: float,
|
383 |
+
max_new_tokens: int,
|
384 |
+
max_token: int,
|
385 |
+
max_round: int = 20,
|
386 |
+
call_agent=False,
|
387 |
+
call_agent_level=0) -> str:
|
388 |
+
"""
|
389 |
+
Generate a streaming response using the llama3-8b model.
|
390 |
+
Args:
|
391 |
+
message (str): The input message.
|
392 |
+
temperature (float): The temperature for generating the response.
|
393 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
394 |
+
Returns:
|
395 |
+
str: The generated response.
|
396 |
+
"""
|
397 |
+
print("\033[1;32;40mstart\033[0m")
|
398 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
399 |
+
call_agent, call_agent_level, message)
|
400 |
+
conversation = self.initialize_conversation(message)
|
401 |
+
|
402 |
+
outputs = []
|
403 |
+
last_outputs = []
|
404 |
+
next_round = True
|
405 |
+
function_call_messages = []
|
406 |
+
current_round = 0
|
407 |
+
token_overflow = False
|
408 |
+
enable_summary = False
|
409 |
+
last_status = {}
|
410 |
+
|
411 |
+
if self.enable_checker:
|
412 |
+
checker = ReasoningTraceChecker(message, conversation)
|
413 |
+
try:
|
414 |
+
while next_round and current_round < max_round:
|
415 |
+
current_round += 1
|
416 |
+
if len(outputs) > 0:
|
417 |
+
function_call_messages, picked_tools_prompt, special_tool_call = self.run_function_call(
|
418 |
+
last_outputs, return_message=True,
|
419 |
+
existing_tools_prompt=picked_tools_prompt,
|
420 |
+
message_for_call_agent=message,
|
421 |
+
call_agent=call_agent,
|
422 |
+
call_agent_level=call_agent_level,
|
423 |
+
temperature=temperature)
|
424 |
+
|
425 |
+
if special_tool_call == 'Finish':
|
426 |
+
next_round = False
|
427 |
+
conversation.extend(function_call_messages)
|
428 |
+
if isinstance(function_call_messages[0]['content'], types.GeneratorType):
|
429 |
+
function_call_messages[0]['content'] = next(
|
430 |
+
function_call_messages[0]['content'])
|
431 |
+
return function_call_messages[0]['content'].split('[FinalAnswer]')[-1]
|
432 |
+
|
433 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
434 |
+
if token_overflow:
|
435 |
+
print("token_overflow, using summary")
|
436 |
+
enable_summary = True
|
437 |
+
last_status = self.function_result_summary(
|
438 |
+
conversation, status=last_status, enable_summary=enable_summary)
|
439 |
+
|
440 |
+
if function_call_messages is not None:
|
441 |
+
conversation.extend(function_call_messages)
|
442 |
+
outputs.append(tool_result_format(
|
443 |
+
function_call_messages))
|
444 |
+
else:
|
445 |
+
next_round = False
|
446 |
+
conversation.extend(
|
447 |
+
[{"role": "assistant", "content": ''.join(last_outputs)}])
|
448 |
+
return ''.join(last_outputs).replace("</s>", "")
|
449 |
+
if self.enable_checker:
|
450 |
+
good_status, wrong_info = checker.check_conversation()
|
451 |
+
if not good_status:
|
452 |
+
next_round = False
|
453 |
+
print(
|
454 |
+
"Internal error in reasoning: " + wrong_info)
|
455 |
+
break
|
456 |
+
last_outputs = []
|
457 |
+
outputs.append("### TxAgent:\n")
|
458 |
+
last_outputs_str, token_overflow = self.llm_infer(messages=conversation,
|
459 |
+
temperature=temperature,
|
460 |
+
tools=picked_tools_prompt,
|
461 |
+
skip_special_tokens=False,
|
462 |
+
max_new_tokens=max_new_tokens, max_token=max_token,
|
463 |
+
check_token_status=True)
|
464 |
+
if last_outputs_str is None:
|
465 |
+
next_round = False
|
466 |
+
print(
|
467 |
+
"The number of tokens exceeds the maximum limit.")
|
468 |
+
else:
|
469 |
+
last_outputs.append(last_outputs_str)
|
470 |
+
if max_round == current_round:
|
471 |
+
print("The number of rounds exceeds the maximum limit!")
|
472 |
+
if self.force_finish:
|
473 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
474 |
+
else:
|
475 |
+
return None
|
476 |
+
|
477 |
+
except Exception as e:
|
478 |
+
print(f"Error: {e}")
|
479 |
+
if self.force_finish:
|
480 |
+
return self.get_answer_based_on_unfinished_reasoning(conversation, temperature, max_new_tokens, max_token)
|
481 |
+
else:
|
482 |
+
return None
|
483 |
+
|
484 |
+
def build_logits_processor(self, messages, llm):
|
485 |
+
# Use the tokenizer from the LLM instance.
|
486 |
+
tokenizer = llm.get_tokenizer()
|
487 |
+
if self.avoid_repeat and len(messages) > 2:
|
488 |
+
assistant_messages = []
|
489 |
+
for i in range(1, len(messages) + 1):
|
490 |
+
if messages[-i]['role'] == 'assistant':
|
491 |
+
assistant_messages.append(messages[-i]['content'])
|
492 |
+
if len(assistant_messages) == 2:
|
493 |
+
break
|
494 |
+
forbidden_ids = [tokenizer.encode(
|
495 |
+
msg, add_special_tokens=False) for msg in assistant_messages]
|
496 |
+
return [NoRepeatSentenceProcessor(forbidden_ids, 5)]
|
497 |
+
else:
|
498 |
+
return None
|
499 |
+
|
500 |
+
def llm_infer(self, messages, temperature=0.1, tools=None,
|
501 |
+
output_begin_string=None, max_new_tokens=2048,
|
502 |
+
max_token=None, skip_special_tokens=True,
|
503 |
+
model=None, tokenizer=None, terminators=None, seed=None, check_token_status=False):
|
504 |
+
|
505 |
+
if model is None:
|
506 |
+
model = self.model
|
507 |
+
|
508 |
+
logits_processor = self.build_logits_processor(messages, model)
|
509 |
+
sampling_params = SamplingParams(
|
510 |
+
temperature=temperature,
|
511 |
+
max_tokens=max_new_tokens,
|
512 |
+
|
513 |
+
seed=seed if seed is not None else self.seed,
|
514 |
+
)
|
515 |
+
|
516 |
+
prompt = self.chat_template.render(
|
517 |
+
messages=messages, tools=tools, add_generation_prompt=True)
|
518 |
+
if output_begin_string is not None:
|
519 |
+
prompt += output_begin_string
|
520 |
+
|
521 |
+
if check_token_status and max_token is not None:
|
522 |
+
token_overflow = False
|
523 |
+
num_input_tokens = len(self.tokenizer.encode(
|
524 |
+
prompt, return_tensors="pt")[0])
|
525 |
+
if max_token is not None:
|
526 |
+
if num_input_tokens > max_token:
|
527 |
+
torch.cuda.empty_cache()
|
528 |
+
gc.collect()
|
529 |
+
print("Number of input tokens before inference:",
|
530 |
+
num_input_tokens)
|
531 |
+
logger.info(
|
532 |
+
"The number of tokens exceeds the maximum limit!!!!")
|
533 |
+
token_overflow = True
|
534 |
+
return None, token_overflow
|
535 |
+
output = model.generate(
|
536 |
+
prompt,
|
537 |
+
sampling_params=sampling_params,
|
538 |
+
)
|
539 |
+
output = output[0].outputs[0].text
|
540 |
+
print("\033[92m" + output + "\033[0m")
|
541 |
+
if check_token_status and max_token is not None:
|
542 |
+
return output, token_overflow
|
543 |
+
|
544 |
+
return output
|
545 |
+
|
546 |
+
def run_self_agent(self, message: str,
|
547 |
+
temperature: float,
|
548 |
+
max_new_tokens: int,
|
549 |
+
max_token: int) -> str:
|
550 |
+
|
551 |
+
print("\033[1;32;40mstart self agent\033[0m")
|
552 |
+
conversation = []
|
553 |
+
conversation = self.set_system_prompt(conversation, self.self_prompt)
|
554 |
+
conversation.append({"role": "user", "content": message})
|
555 |
+
return self.llm_infer(messages=conversation,
|
556 |
+
temperature=temperature,
|
557 |
+
tools=None,
|
558 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
559 |
+
|
560 |
+
def run_chat_agent(self, message: str,
|
561 |
+
temperature: float,
|
562 |
+
max_new_tokens: int,
|
563 |
+
max_token: int) -> str:
|
564 |
+
|
565 |
+
print("\033[1;32;40mstart chat agent\033[0m")
|
566 |
+
conversation = []
|
567 |
+
conversation = self.set_system_prompt(conversation, self.chat_prompt)
|
568 |
+
conversation.append({"role": "user", "content": message})
|
569 |
+
return self.llm_infer(messages=conversation,
|
570 |
+
temperature=temperature,
|
571 |
+
tools=None,
|
572 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
573 |
+
|
574 |
+
def run_format_agent(self, message: str,
|
575 |
+
answer: str,
|
576 |
+
temperature: float,
|
577 |
+
max_new_tokens: int,
|
578 |
+
max_token: int) -> str:
|
579 |
+
|
580 |
+
print("\033[1;32;40mstart format agent\033[0m")
|
581 |
+
if '[FinalAnswer]' in answer:
|
582 |
+
possible_final_answer = answer.split("[FinalAnswer]")[-1]
|
583 |
+
elif "\n\n" in answer:
|
584 |
+
possible_final_answer = answer.split("\n\n")[-1]
|
585 |
+
else:
|
586 |
+
possible_final_answer = answer.strip()
|
587 |
+
if len(possible_final_answer) == 1:
|
588 |
+
choice = possible_final_answer[0]
|
589 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
590 |
+
return choice
|
591 |
+
elif len(possible_final_answer) > 1:
|
592 |
+
if possible_final_answer[1] == ':':
|
593 |
+
choice = possible_final_answer[0]
|
594 |
+
if choice in ['A', 'B', 'C', 'D', 'E']:
|
595 |
+
print("choice", choice)
|
596 |
+
return choice
|
597 |
+
|
598 |
+
conversation = []
|
599 |
+
format_prompt = f"You are helpful assistant to transform the answer of agent to the final answer of 'A', 'B', 'C', 'D'."
|
600 |
+
conversation = self.set_system_prompt(conversation, format_prompt)
|
601 |
+
conversation.append({"role": "user", "content": message +
|
602 |
+
"\nThe final answer of agent:" + answer + "\n The answer is (must be a letter):"})
|
603 |
+
return self.llm_infer(messages=conversation,
|
604 |
+
temperature=temperature,
|
605 |
+
tools=None,
|
606 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
607 |
+
|
608 |
+
def run_summary_agent(self, thought_calls: str,
|
609 |
+
function_response: str,
|
610 |
+
temperature: float,
|
611 |
+
max_new_tokens: int,
|
612 |
+
max_token: int) -> str:
|
613 |
+
print("\033[1;32;40mSummarized Tool Result:\033[0m")
|
614 |
+
generate_tool_result_summary_training_prompt = """Thought and function calls:
|
615 |
+
{thought_calls}
|
616 |
+
|
617 |
+
Function calls' responses:
|
618 |
+
\"\"\"
|
619 |
+
{function_response}
|
620 |
+
\"\"\"
|
621 |
+
|
622 |
+
Based on the Thought and function calls, and the function calls' responses, you need to generate a summary of the function calls' responses that fulfills the requirements of the thought. The summary MUST BE ONE sentence and include all necessary information.
|
623 |
+
|
624 |
+
Directly respond with the summarized sentence of the function calls' responses only.
|
625 |
+
|
626 |
+
Generate **one summarized sentence** about "function calls' responses" with necessary information, and respond with a string:
|
627 |
+
""".format(thought_calls=thought_calls, function_response=function_response)
|
628 |
+
conversation = []
|
629 |
+
conversation.append(
|
630 |
+
{"role": "user", "content": generate_tool_result_summary_training_prompt})
|
631 |
+
output = self.llm_infer(messages=conversation,
|
632 |
+
temperature=temperature,
|
633 |
+
tools=None,
|
634 |
+
max_new_tokens=max_new_tokens, max_token=max_token)
|
635 |
+
|
636 |
+
if '[' in output:
|
637 |
+
output = output.split('[')[0]
|
638 |
+
return output
|
639 |
+
|
640 |
+
def function_result_summary(self, input_list, status, enable_summary):
|
641 |
+
"""
|
642 |
+
Processes the input list, extracting information from sequences of 'user', 'tool', 'assistant' roles.
|
643 |
+
Supports 'length' and 'step' modes, and skips the last 'k' groups.
|
644 |
+
|
645 |
+
Parameters:
|
646 |
+
input_list (list): A list of dictionaries containing role and other information.
|
647 |
+
summary_skip_last_k (int): Number of groups to skip from the end. Defaults to 0.
|
648 |
+
summary_context_length (int): The context length threshold for the 'length' mode.
|
649 |
+
last_processed_index (tuple or int): The last processed index.
|
650 |
+
|
651 |
+
Returns:
|
652 |
+
list: A list of extracted information from valid sequences.
|
653 |
+
"""
|
654 |
+
if 'tool_call_step' not in status:
|
655 |
+
status['tool_call_step'] = 0
|
656 |
+
|
657 |
+
for idx in range(len(input_list)):
|
658 |
+
pos_id = len(input_list)-idx-1
|
659 |
+
if input_list[pos_id]['role'] == 'assistant':
|
660 |
+
if 'tool_calls' in input_list[pos_id]:
|
661 |
+
if 'Tool_RAG' in str(input_list[pos_id]['tool_calls']):
|
662 |
+
status['tool_call_step'] += 1
|
663 |
+
break
|
664 |
+
|
665 |
+
if 'step' in status:
|
666 |
+
status['step'] += 1
|
667 |
+
else:
|
668 |
+
status['step'] = 0
|
669 |
+
|
670 |
+
if not enable_summary:
|
671 |
+
return status
|
672 |
+
|
673 |
+
if 'summarized_index' not in status:
|
674 |
+
status['summarized_index'] = 0
|
675 |
+
|
676 |
+
if 'summarized_step' not in status:
|
677 |
+
status['summarized_step'] = 0
|
678 |
+
|
679 |
+
if 'previous_length' not in status:
|
680 |
+
status['previous_length'] = 0
|
681 |
+
|
682 |
+
if 'history' not in status:
|
683 |
+
status['history'] = []
|
684 |
+
|
685 |
+
function_response = ''
|
686 |
+
idx = 0
|
687 |
+
current_summarized_index = status['summarized_index']
|
688 |
+
|
689 |
+
status['history'].append(self.summary_mode == 'step' and status['summarized_step']
|
690 |
+
< status['step']-status['tool_call_step']-self.summary_skip_last_k)
|
691 |
+
|
692 |
+
idx = current_summarized_index
|
693 |
+
while idx < len(input_list):
|
694 |
+
if (self.summary_mode == 'step' and status['summarized_step'] < status['step']-status['tool_call_step']-self.summary_skip_last_k) or (self.summary_mode == 'length' and status['previous_length'] > self.summary_context_length):
|
695 |
+
|
696 |
+
if input_list[idx]['role'] == 'assistant':
|
697 |
+
if 'Tool_RAG' in str(input_list[idx]['tool_calls']):
|
698 |
+
this_thought_calls = None
|
699 |
+
else:
|
700 |
+
if len(function_response) != 0:
|
701 |
+
print("internal summary")
|
702 |
+
status['summarized_step'] += 1
|
703 |
+
result_summary = self.run_summary_agent(
|
704 |
+
thought_calls=this_thought_calls,
|
705 |
+
function_response=function_response,
|
706 |
+
temperature=0.1,
|
707 |
+
max_new_tokens=1024,
|
708 |
+
max_token=99999
|
709 |
+
)
|
710 |
+
|
711 |
+
input_list.insert(
|
712 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
713 |
+
status['summarized_index'] = last_call_idx + 2
|
714 |
+
idx += 1
|
715 |
+
|
716 |
+
last_call_idx = idx
|
717 |
+
this_thought_calls = input_list[idx]['content'] + \
|
718 |
+
input_list[idx]['tool_calls']
|
719 |
+
function_response = ''
|
720 |
+
|
721 |
+
elif input_list[idx]['role'] == 'tool' and this_thought_calls is not None:
|
722 |
+
function_response += input_list[idx]['content']
|
723 |
+
del input_list[idx]
|
724 |
+
idx -= 1
|
725 |
+
|
726 |
+
else:
|
727 |
+
break
|
728 |
+
idx += 1
|
729 |
+
|
730 |
+
if len(function_response) != 0:
|
731 |
+
status['summarized_step'] += 1
|
732 |
+
result_summary = self.run_summary_agent(
|
733 |
+
thought_calls=this_thought_calls,
|
734 |
+
function_response=function_response,
|
735 |
+
temperature=0.1,
|
736 |
+
max_new_tokens=1024,
|
737 |
+
max_token=99999
|
738 |
+
)
|
739 |
+
|
740 |
+
tool_calls = json.loads(input_list[last_call_idx]['tool_calls'])
|
741 |
+
for tool_call in tool_calls:
|
742 |
+
del tool_call['call_id']
|
743 |
+
input_list[last_call_idx]['tool_calls'] = json.dumps(tool_calls)
|
744 |
+
input_list.insert(
|
745 |
+
last_call_idx+1, {'role': 'tool', 'content': result_summary})
|
746 |
+
status['summarized_index'] = last_call_idx + 2
|
747 |
+
|
748 |
+
return status
|
749 |
+
|
750 |
+
# Following are Gradio related functions
|
751 |
+
|
752 |
+
# General update method that accepts any new arguments through kwargs
|
753 |
+
def update_parameters(self, **kwargs):
|
754 |
+
for key, value in kwargs.items():
|
755 |
+
if hasattr(self, key):
|
756 |
+
setattr(self, key, value)
|
757 |
+
|
758 |
+
# Return the updated attributes
|
759 |
+
updated_attributes = {key: value for key,
|
760 |
+
value in kwargs.items() if hasattr(self, key)}
|
761 |
+
return updated_attributes
|
762 |
+
|
763 |
+
def run_gradio_chat(self, message: str,
|
764 |
+
history: list,
|
765 |
+
temperature: float,
|
766 |
+
max_new_tokens: int,
|
767 |
+
max_token: int,
|
768 |
+
call_agent: bool,
|
769 |
+
conversation: gr.State,
|
770 |
+
max_round: int = 20,
|
771 |
+
seed: int = None,
|
772 |
+
call_agent_level: int = 0,
|
773 |
+
sub_agent_task: str = None) -> str:
|
774 |
+
"""
|
775 |
+
Generate a streaming response using the llama3-8b model.
|
776 |
+
Args:
|
777 |
+
message (str): The input message.
|
778 |
+
history (list): The conversation history used by ChatInterface.
|
779 |
+
temperature (float): The temperature for generating the response.
|
780 |
+
max_new_tokens (int): The maximum number of new tokens to generate.
|
781 |
+
Returns:
|
782 |
+
str: The generated response.
|
783 |
+
"""
|
784 |
+
print("\033[1;32;40mstart\033[0m")
|
785 |
+
print("len(message)", len(message))
|
786 |
+
if len(message) <= 10:
|
787 |
+
yield "Hi, I am TxAgent, an assistant for answering biomedical questions. Please provide a valid message with a string longer than 10 characters."
|
788 |
+
return "Please provide a valid message."
|
789 |
+
outputs = []
|
790 |
+
outputs_str = ''
|
791 |
+
last_outputs = []
|
792 |
+
|
793 |
+
picked_tools_prompt, call_agent_level = self.initialize_tools_prompt(
|
794 |
+
call_agent,
|
795 |
+
call_agent_level,
|
796 |
+
message)
|
797 |
+
|
798 |
+
conversation = self.initialize_conversation(
|
799 |
+
message,
|
800 |
+
conversation=conversation,
|
801 |
+
history=history)
|
802 |
+
history = []
|
803 |
+
|
804 |
+
next_round = True
|
805 |
+
function_call_messages = []
|
806 |
+
current_round = 0
|
807 |
+
enable_summary = False
|
808 |
+
last_status = {} # for summary
|
809 |
+
token_overflow = False
|
810 |
+
if self.enable_checker:
|
811 |
+
checker = ReasoningTraceChecker(
|
812 |
+
message, conversation, init_index=len(conversation))
|
813 |
+
|
814 |
+
try:
|
815 |
+
while next_round and current_round < max_round:
|
816 |
+
current_round += 1
|
817 |
+
if len(last_outputs) > 0:
|
818 |
+
function_call_messages, picked_tools_prompt, special_tool_call, current_gradio_history = yield from self.run_function_call_stream(
|
819 |
+
last_outputs, return_message=True,
|
820 |
+
existing_tools_prompt=picked_tools_prompt,
|
821 |
+
message_for_call_agent=message,
|
822 |
+
call_agent=call_agent,
|
823 |
+
call_agent_level=call_agent_level,
|
824 |
+
temperature=temperature)
|
825 |
+
history.extend(current_gradio_history)
|
826 |
+
if special_tool_call == 'Finish':
|
827 |
+
yield history
|
828 |
+
next_round = False
|
829 |
+
conversation.extend(function_call_messages)
|
830 |
+
return function_call_messages[0]['content']
|
831 |
+
elif special_tool_call == 'RequireClarification' or special_tool_call == 'DirectResponse':
|
832 |
+
history.append(
|
833 |
+
ChatMessage(role="assistant", content=history[-1].content))
|
834 |
+
yield history
|
835 |
+
next_round = False
|
836 |
+
return history[-1].content
|
837 |
+
if (self.enable_summary or token_overflow) and not call_agent:
|
838 |
+
if token_overflow:
|
839 |
+
print("token_overflow, using summary")
|
840 |
+
enable_summary = True
|
841 |
+
last_status = self.function_result_summary(
|
842 |
+
conversation, status=last_status,
|
843 |
+
enable_summary=enable_summary)
|
844 |
+
if function_call_messages is not None:
|
845 |
+
conversation.extend(function_call_messages)
|
846 |
+
formated_md_function_call_messages = tool_result_format(
|
847 |
+
function_call_messages)
|
848 |
+
yield history
|
849 |
+
else:
|
850 |
+
next_round = False
|
851 |
+
conversation.extend(
|
852 |
+
[{"role": "assistant", "content": ''.join(last_outputs)}])
|
853 |
+
return ''.join(last_outputs).replace("</s>", "")
|
854 |
+
if self.enable_checker:
|
855 |
+
good_status, wrong_info = checker.check_conversation()
|
856 |
+
if not good_status:
|
857 |
+
next_round = False
|
858 |
+
print("Internal error in reasoning: " + wrong_info)
|
859 |
+
break
|
860 |
+
last_outputs = []
|
861 |
+
last_outputs_str, token_overflow = self.llm_infer(
|
862 |
+
messages=conversation,
|
863 |
+
temperature=temperature,
|
864 |
+
tools=picked_tools_prompt,
|
865 |
+
skip_special_tokens=False,
|
866 |
+
max_new_tokens=max_new_tokens,
|
867 |
+
max_token=max_token,
|
868 |
+
seed=seed,
|
869 |
+
check_token_status=True)
|
870 |
+
last_thought = last_outputs_str.split("[TOOL_CALLS]")[0]
|
871 |
+
for each in history:
|
872 |
+
if each.metadata is not None:
|
873 |
+
each.metadata['status'] = 'done'
|
874 |
+
if '[FinalAnswer]' in last_thought:
|
875 |
+
final_thought, final_answer = last_thought.split(
|
876 |
+
'[FinalAnswer]')
|
877 |
+
history.append(
|
878 |
+
ChatMessage(role="assistant",
|
879 |
+
content=final_thought.strip())
|
880 |
+
)
|
881 |
+
yield history
|
882 |
+
history.append(
|
883 |
+
ChatMessage(
|
884 |
+
role="assistant", content="**Answer**:\n"+final_answer.strip())
|
885 |
+
)
|
886 |
+
yield history
|
887 |
+
else:
|
888 |
+
history.append(ChatMessage(
|
889 |
+
role="assistant", content=last_thought))
|
890 |
+
yield history
|
891 |
+
|
892 |
+
last_outputs.append(last_outputs_str)
|
893 |
+
|
894 |
+
if next_round:
|
895 |
+
if self.force_finish:
|
896 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
897 |
+
conversation, temperature, max_new_tokens, max_token)
|
898 |
+
for each in history:
|
899 |
+
if each.metadata is not None:
|
900 |
+
each.metadata['status'] = 'done'
|
901 |
+
if '[FinalAnswer]' in last_thought:
|
902 |
+
final_thought, final_answer = last_thought.split(
|
903 |
+
'[FinalAnswer]')
|
904 |
+
history.append(
|
905 |
+
ChatMessage(role="assistant",
|
906 |
+
content=final_thought.strip())
|
907 |
+
)
|
908 |
+
yield history
|
909 |
+
history.append(
|
910 |
+
ChatMessage(
|
911 |
+
role="assistant", content="**Answer**:\n"+final_answer.strip())
|
912 |
+
)
|
913 |
+
yield history
|
914 |
+
else:
|
915 |
+
yield "The number of rounds exceeds the maximum limit!"
|
916 |
+
|
917 |
+
except Exception as e:
|
918 |
+
print(f"Error: {e}")
|
919 |
+
if self.force_finish:
|
920 |
+
last_outputs_str = self.get_answer_based_on_unfinished_reasoning(
|
921 |
+
conversation,
|
922 |
+
temperature,
|
923 |
+
max_new_tokens,
|
924 |
+
max_token)
|
925 |
+
for each in history:
|
926 |
+
if each.metadata is not None:
|
927 |
+
each.metadata['status'] = 'done'
|
928 |
+
if '[FinalAnswer]' in last_thought or '"name": "Finish",' in last_outputs_str:
|
929 |
+
if '[FinalAnswer]' in last_thought:
|
930 |
+
final_thought, final_answer = last_thought.split('[FinalAnswer]', 1)
|
931 |
+
else:
|
932 |
+
final_thought = ""
|
933 |
+
final_answer = last_thought
|
934 |
+
history.append(
|
935 |
+
ChatMessage(role="assistant",
|
936 |
+
content=final_thought.strip())
|
937 |
+
)
|
938 |
+
yield history
|
939 |
+
history.append(
|
940 |
+
ChatMessage(
|
941 |
+
role="assistant", content="**Answer**:\n" + final_answer.strip())
|
942 |
+
)
|
943 |
+
yield history
|
944 |
+
else:
|
945 |
+
return None
|
src/txagent/utils.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import json
|
3 |
+
import hashlib
|
4 |
+
import torch
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
|
8 |
+
def get_md5(input_str):
|
9 |
+
# Create an MD5 hash object
|
10 |
+
md5_hash = hashlib.md5()
|
11 |
+
|
12 |
+
# Encode the string and update the hash object
|
13 |
+
md5_hash.update(input_str.encode('utf-8'))
|
14 |
+
|
15 |
+
# Return the hexadecimal MD5 digest
|
16 |
+
return md5_hash.hexdigest()
|
17 |
+
|
18 |
+
|
19 |
+
def tool_result_format(function_call_messages):
|
20 |
+
current_output = "\n\n<details>\n<summary> <strong>Verfied Feedback from Tools</strong>, click to see details:</summary>\n\n"
|
21 |
+
for each_message in function_call_messages:
|
22 |
+
if each_message['role'] == 'tool':
|
23 |
+
current_output += f"{each_message['content']}\n\n"
|
24 |
+
current_output += "</details>\n\n\n"
|
25 |
+
return current_output
|
26 |
+
|
27 |
+
|
28 |
+
class NoRepeatSentenceProcessor:
|
29 |
+
def __init__(self, forbidden_sequences: List[List[int]], allowed_prefix_length: int):
|
30 |
+
"""
|
31 |
+
Args:
|
32 |
+
forbidden_sequences (List[List[int]]): A list of token ID sequences corresponding to forbidden sentences.
|
33 |
+
allowed_prefix_length (int): The number k such that if the generated tokens match the first k tokens
|
34 |
+
of a forbidden sequence, then the candidate token that would extend the match is blocked.
|
35 |
+
"""
|
36 |
+
self.allowed_prefix_length = allowed_prefix_length
|
37 |
+
# Build a lookup dictionary: key is a tuple of the first k tokens, value is a set of tokens to block.
|
38 |
+
self.forbidden_prefix_dict = {}
|
39 |
+
for seq in forbidden_sequences:
|
40 |
+
if len(seq) > allowed_prefix_length:
|
41 |
+
prefix = tuple(seq[:allowed_prefix_length])
|
42 |
+
next_token = seq[allowed_prefix_length]
|
43 |
+
self.forbidden_prefix_dict.setdefault(
|
44 |
+
prefix, set()).add(next_token)
|
45 |
+
|
46 |
+
def __call__(self, token_ids: List[int], logits: torch.Tensor) -> torch.Tensor:
|
47 |
+
"""
|
48 |
+
Modifies the logits to block tokens that would extend a forbidden sentence.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
token_ids (List[int]): List of token IDs generated so far.
|
52 |
+
logits (torch.Tensor): Logits tensor for the next token (shape: [vocab_size]).
|
53 |
+
|
54 |
+
Returns:
|
55 |
+
torch.Tensor: Modified logits.
|
56 |
+
"""
|
57 |
+
if len(token_ids) >= self.allowed_prefix_length:
|
58 |
+
prefix = tuple(token_ids[:self.allowed_prefix_length])
|
59 |
+
if prefix in self.forbidden_prefix_dict:
|
60 |
+
for token_id in self.forbidden_prefix_dict[prefix]:
|
61 |
+
logits[token_id] = -float("inf")
|
62 |
+
return logits
|
63 |
+
|
64 |
+
|
65 |
+
class ReasoningTraceChecker:
|
66 |
+
def __init__(self, question, conversation, init_index=None):
|
67 |
+
self.question = question
|
68 |
+
self.conversation = conversation
|
69 |
+
self.existing_thoughts = []
|
70 |
+
self.existing_actions = []
|
71 |
+
if init_index is not None:
|
72 |
+
self.index = init_index
|
73 |
+
else:
|
74 |
+
self.index = 1
|
75 |
+
self.question = self.question.lower()
|
76 |
+
self.new_thoughts = []
|
77 |
+
self.new_actions = []
|
78 |
+
|
79 |
+
def check_conversation(self):
|
80 |
+
info = ''
|
81 |
+
current_index = self.index
|
82 |
+
for i in range(current_index, len(self.conversation)):
|
83 |
+
each = self.conversation[i]
|
84 |
+
self.index = i
|
85 |
+
if each['role'] == 'assistant':
|
86 |
+
print(each)
|
87 |
+
thought = each['content']
|
88 |
+
actions = each['tool_calls']
|
89 |
+
|
90 |
+
good_status, current_info = self.check_repeat_thought(thought)
|
91 |
+
info += current_info
|
92 |
+
if not good_status:
|
93 |
+
return False, info
|
94 |
+
|
95 |
+
good_status, current_info = self.check_repeat_action(actions)
|
96 |
+
info += current_info
|
97 |
+
if not good_status:
|
98 |
+
return False, info
|
99 |
+
return True, info
|
100 |
+
|
101 |
+
def check_repeat_thought(self, thought):
|
102 |
+
if thought in self.existing_thoughts:
|
103 |
+
return False, "repeat_thought"
|
104 |
+
self.existing_thoughts.append(thought)
|
105 |
+
return True, ''
|
106 |
+
|
107 |
+
def check_repeat_action(self, actions):
|
108 |
+
if type(actions) != list:
|
109 |
+
actions = json.loads(actions)
|
110 |
+
for each_action in actions:
|
111 |
+
if 'call_id' in each_action:
|
112 |
+
del each_action['call_id']
|
113 |
+
each_action = json.dumps(each_action)
|
114 |
+
if each_action in self.existing_actions:
|
115 |
+
return False, "repeat_action"
|
116 |
+
self.existing_actions.append(each_action)
|
117 |
+
return True, ''
|